Download presentation
Presentation is loading. Please wait.
Published byHenriette Tassé Modified over 5 years ago
1
ALMA: Resolving (optically) obscured galaxy formation
Dusty04, C. Carilli (NRAO) IR Optical Franceschini 2000 Cosmic Background Radiation
2
Obscured galaxy formation: low redshift (Meier & Turner 2004)
IC342 distance = 2 Mpc M_gas = 4e7 M_sun SFR = 0.1 M_sun/yr Starburst age = 1e7 yrs 30” = 300pc
3
Obscured galaxy formation: high redshift (Downes et al 2002; Dunlop et al 2003)
PdBI/VLA position => K = 23.5 (Dunlop et al.) I – K > 5.2 z = 4 +/- 1 (?) S_250 = 2.1 +/- 0.3 mJy S_1.4 = 16 +/- 4 uJy L_FIR=7e12 L_sun Grav. Mag. = 3x (?) Single Scuba galaxy dominates SFR at z>2 in HDF over optical galaxies!
4
UV selected galaxies – large range in bolometric luminosity, but little correlation of L_uv and L_bol Adelberger 2000
5
Magic of (sub)mm L_FIR = 4e12 x S_250(mJy) L_sun for z=0.5 to 8
6
(sub)mm Dust, molecular gas Near-IR: Stars, ionized gas, AGN
Enabling Technology I: sensitivity – Arp 220 vs z (FIR=1.6e12 L_sun) cm: Star formation, AGN (sub)mm Dust, molecular gas Near-IR: Stars, ionized gas, AGN
7
Enabling technology II: Resolution
10’s mas resolution, T_B = 0.3 K: GMCs at 200Mpc ALMA PdBI/CARMA
8
Nearby star forming Galaxies – Chemistry/Physics: IC342, D=2Mpc
Meier & Turner 2004 CO: all gas 300pc HC3N: Dense C2H: PDRs ALMA: Image with GMC resolution (50pc) to 250 Mpc Rich clusters: Virgo = 16 Mpc, Coma = 100 Mpc ULIRGs: Arp 220 = 75 Mpc, Mrk 273 = 160 Mpc
9
Nearby Gals II: Dynamics: ‘feeding the nucleus’ – NGC6946, D=5.5Mpc
Schinnerer et al., in prep. Nearby Gals II: Dynamics: ‘feeding the nucleus’ – NGC6946, D=5.5Mpc PdBI 0.5” CO(2-1) - Gas Lanes along Bar Streaming Motions Gas Disk w/ R <15pc ALMA: extend to Mrk 231 at 180 Mpc Cygnus A at 240 Mpc 100 pc
10
Probing the epoch of “galaxy formation” : z = 1.5 – 3.5
Optical gals IR/(sub)mm gals Comparable SFR at high z in dusty starbursts as optical galaxies?
11
(sub)mm Source counts (Blain 2002)
ALMA ALMA: 2e6 gals/deg^2 HDF: 4e6 gals/deg^2 Big Difference: ALMA gals (mostly) at z > 1 HST gals (mostly) at z < 1 Lensed fields Current bolometers
12
L_FIR vs L’(CO) (Beelen + 04)
PdBI/Carma z>2 1e3 M_sun/yr ALMA z>2 Index=1 1e11 M_sun Index=1.7
13
SKA and ALMA: Optimal CO searches
ALMA: discovers 10 gals/hr z=0.5 – 2.5 SKA: discovers gals/hr z=4
14
HCN 1-0 emission: VLA detections
n(H_2) > 1e5 cm^-3 (vs. CO: n(H_2) > 1e3 cm^-3) Current z>2 Solomon et al Index=1 z=2.58 ALMA z>2 (if constant T_b) 70 uJy
15
Main ISM cooling line: [CII] 158um (vd Werf 2004)
16
PKS 2322+1944 z=4.12: CO Einstein ring
VLA CO ” res PdBI PdBI [CI] (492 GHz rest) => Solar Metallicity (Pety 2004)
17
Very wide field surveys: role of bolometer cameras
Bolometers (+ EVLA, Spizter): survey large areas to sub-mJy sensitivity ALMA: detailed SED and CO follow-up ALMA: uJy, narrow field surveys
18
Enabling technology III: Wideband spectroscopy – Redshifts for obscured/faint sources: GHz spectrometers on ALMA, LMT, GBT (Min Yun 04, Harris 04) L_FIR = 1e13 L_sun ALMA
19
History of IGM ionized CoIs: Walter, Bertoldi, Cox, Omont, Beelen, Fan, Strauss... Neutral F(HI)=1 Epoch of Reionization (EoR) bench-mark in cosmic structure formation indicating the first luminous structures Ionized F(HI)=1e-5
20
The Gunn-Peterson Effect
z=5.80 z=5.82 z=5.99 z=6.28 Fast reionization at z=6.3 => opaque at l_obs<0.9mm 1e-3 Fan et al 2003 1e-5
21
WMAP Large scale polarization of CMB (Kogut et al.)
20deg Thompson scattering at EoR t_e = 0.17 => F(HI) < 0.5 at z=17 Complex reionization from z=6 to 15?
22
Objects within EoR – QSO 1148+52 at z=6.4
highest redshift quasar known L_bol = 1e14 L_sun central black hole: 1-5 x 109 Msun => M_bulge = 1.5e12 M_sun (Willot etal.) clear Gunn Peterson trough (Fan etal.)
23
“Pre-ALMA Science” – 1148+52 Dust + CO detection z=6.42
S_250 = 5.0 mJy => L_FIR = 1.2e13 L_sun, M_dust=7e8 M_sun S Dv = 0.2 Jy km/s => M(H_2) = 2e10 M_sun VLA CO 3-2 GHz MAMBO 3’ Off channels rms = 60 uJy Prodigious dust and molecular gas formation within 0.9 Gyr of big bang eg. Dust formation in SNR/massive stars?
24
Typical of starburst nucleus
IRAM Plateau de Bure n2 (6-5) (7-6) (3-2) Tkin=100K, nH2=105cm-3 FWHM = 305 km/s z = / Typical of starburst nucleus
25
VLA imaging of CO3-2 at 0.4” and 0.15” resolution
rms=50uJy at 47GHz CO extended to NW by 1” (=5.5 kpc) tidal(?) feature M_dyn (r<2.5kpc) = 5e10 M_sun => break-down of M-s relation => SMBH form first? Separation = 0.3” = 1.7 kpc T_B = 20K = T_B (starburst) Merging galaxies? Or Dissociation by QSO?
26
Stellar spheroid formation in few e7 yrs = e-folding time for SMBH
: radio-FIR SED Beelen et al. S_1.4= 55 +/- 12 uJy T_D = 50 K Star forming galaxy characteristics: radio-FIR SED, L’_CO/FIR, CO excitation and T_B => Coeval starburst/AGN: SFR = 1000 M_sun/yr Stellar spheroid formation in few e7 yrs = e-folding time for SMBH => Coeval formation of galaxy/SMBH at z = 6.4 ?
27
Objects within the EoR – nearIR detection of ‘normal’ star forming galaxy at z=6.56 (Hu et al)
L_uv = 2e10 L_sun + LBG dust correction (5x) => L_FIR=1e11 L_sun S_250 = 0.03 mJy => 4s ALMA detection in 3 hrs Expect 1 – 2 “normal” galaxies ALMA FoV at z>6
28
ALMA – de-obscuring galaxy formation
I. Seeing through the dust: Physics, chemistry, dynamics of star formation at GMC scale to 250Mpc Unveiling the “submm” galaxy population at z=1 to 3 => ½ SFHU II. First light: Seeing through neutral IGM (GP=> limited to NIR to radio) Study dust, gas, star formation in the first luminous sources Currently limited to pathological systems (‘HLIRGs’) ALMA, EVLA x sensitivity is critical to study normal galaxies z=6.4
29
mm VLBI 10’s mas resolution ALMA mmVLBI PdBI/CARMA
30
Millimeter VLBI – Imaging the Galactic center black hole (Falcke 2000)
Kerr R_g = 3 uas Schwarzschild Model: opt. thin synch 0.6 mm VLBI 16uas res 1.3 mm VLBI 33 uas res
31
mm-vlbi of the Galactic center
(Krichbaum 1998)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.