Presentation is loading. Please wait.

Presentation is loading. Please wait.

MICROECONOMICS Principles and Analysis Frank Cowell

Similar presentations


Presentation on theme: "MICROECONOMICS Principles and Analysis Frank Cowell"— Presentation transcript:

1 MICROECONOMICS Principles and Analysis Frank Cowell
Exercise 2.10 MICROECONOMICS Principles and Analysis Frank Cowell November 2006

2 Ex 2.10: Question purpose: to derive and compare short-run and long-run responses. method: derive AC, MC, supply in original and modified models

3 Ex 2.10(1): Preliminary steps
Put the production function in a more manageable form A quick check on the isoquant for m = 2: Clearly isoquants do not touch the axes Solution cannot be at a corner z 1 2

4 Ex 2.10(1): Cost minimisation
The Lagrangean: Differentiate w.r.t. zi to find the FOCs Rearrange to get: l (the Lagrange multiplier) is an unknown We need to eliminate it

5 Ex 2.10(1): Finding l Use the production function
And substitute in for zi: where From this we find that

6 Ex 2.10(1): The cost function
l can be simplified to Substitute into expression for zi; get optimal input demands So minimised costs expressed as a function of w and q are This can be written as gBq1/g where Differentiating this w.r.t. q, MC is So MC is increasing in q if g < 1

7 Ex 2.10(2): Preliminary In the “short run” the amounts of inputs k+1,…,m are fixed So, define the term (constant in the short run) The production function can be written: This is the only part that is variable in the short run. We see that the problem has exactly the same structure as before but with different parameters. Therefore the solution has the same structure as before

8 Ex 2.10(2): Short-run input demand
We can proceed by analogy with the long-run case Cost-minimising input demands must be: where we have defined Multiplying each input demand by wi and summing will give short-run variable costs

9 Ex 2.10(2): Short-run costs Define short-run fixed costs
the amounts of inputs k+1,…,m are fixed Then short-run total costs are given by Substituting in for zi* costs in the short run are: Clearly this expression has the form: Differentiate costs w.r.t. q and we find short-run MC:

10 Ex 2.10(3): short run supply From the SRMC we get the short-run supply curve The condition “MC = price” gives Solving this for q the supply function is The elasticity of supply is Clearly the elasticity falls if gk falls By definition of gk it must fall if k is reduced

11 Ex 2.10: Points to remember Get the constraint into a convenient form
Get a simple view of the problem by deriving ICs Use a little cunning to simplify the FOCs Re-use your solution for other problems that have the same structure


Download ppt "MICROECONOMICS Principles and Analysis Frank Cowell"

Similar presentations


Ads by Google