Presentation is loading. Please wait.

Presentation is loading. Please wait.

Elastic Green's theorem preprocessing

Similar presentations


Presentation on theme: "Elastic Green's theorem preprocessing"— Presentation transcript:

1 Elastic Green's theorem preprocessing
for on-shore internal multiple attenuation: theory and initial synthetic data tests Jing Wu* and Arthur B. Weglein May 28th, 2014 Austin, TX 1 1

2 ( Bahareh Boustani et al. 2013 )
Problem ( Bahareh Boustani et al. 2013 ) Ground Roll (Rayleigh Wave)

3 ( Bahareh Boustani et al. 2013 )
Problem Reference wave Green’s theorem Ground Roll (Rayleigh Wave) ( Bahareh Boustani et al. 2013 )

4 ( Bahareh Boustani et al. 2013 )
Problem Elastic Green’s theorem Reference wave Ground Roll (Rayleigh Wave) ( Bahareh Boustani et al. 2013 )

5 Elastic Green’s theorem reference wave prediction
Theory of Elastic Green’s theorem reference wave prediction

6 Actual medium Experiment
Reference medium Perturbation Active source ( “Passive source” ) “Source”

7 Off-shore: reference medium
Air Water ( Acoustic ) F. S.

8 Off-shore: reference medium
M. S. F. S. Air Water ( Acoustic )

9 Off-shore: reference medium + “source”
Earth M. S. F. S. Air Water ( Acoustic )

10 Off-shore: reference wave
M. S. F. S. Earth Air Water ( Acoustic ) ( Weglein and Secrest 90; Weglein 02; J. Zhang 05, 06, 07; Mayhan 12, 13; L. Tang 13 )

11 Off-shore: reference wave
M. S. F. S. Earth Air Water ( Acoustic ) ( Weglein and Secrest 90; Weglein 02; J. Zhang 05, 06, 07; Mayhan 12, 13; L. Tang 13 )

12 On-shore: reference medium
Elastic F. S. Air

13 On-shore: reference medium
M. S. F. S. Elastic Air

14 On-shore: reference medium + “source”
Elastic M. S. F. S. Air Earth

15 On-shore: reference wave
M. S. F. S. Elastic Air Earth

16 On-shore: reference wave
M. S. F. S. Elastic Air Earth

17 On-shore: reference wave
M. S. F. S. Elastic Air Earth

18 On-shore: reference wave prediction in (x,)

19 On-shore: reference wave prediction in (x,)
( Stolt & Weglein 1992, 2012 )

20 On-shore: reference wave prediction in (x,)
( Stolt & Weglein 1992, 2012 )

21 M. S. F. S. Elastic Air

22 F. S. Elastic Air M. S.

23 F. S. Elastic Air M. S.

24 F. S. Elastic Air M. S.

25 F. S. Elastic Air M. S.

26 F. S. Elastic Air M. S.

27 F. S. Elastic Air M. S.

28

29 On-shore: reference wave prediction in (kx,)
Assuming M.S. is horizontal

30 On-shore: reference wave prediction in (kx,)
M. S. F. S. Elastic Air Earth

31 Wavelet Estimation or

32 Numerical Evaluation

33 Water (acoustic) /elastic model --- OBC
Zs = -10 m O. B. 0m M.S. 1 m Elastic Water Layer P Velocity (m/s) S Velocity (m/s) Density (kg/m3) 1 1500 1000 2 1700 700 2000

34 Water (acoustic) /elastic model --- OBC
Zs = -10 m O. B. 0m M.S. 1 m Elastic Water Layer P Velocity (m/s) S Velocity (m/s) Density (kg/m3) 1 1500 1000 2 1700 700 2000

35 Reference wave prediction in water/earth: P wave component
Scholte wave Input data P Predicted Reference wave P0 P-P0

36 Actual wavelet

37 Estimated wavelet from P0

38 Reference wave prediction in water/earth: S wave component
Input data S Predicted Reference wave S0 S-S0 Scholte wave

39 Actual wavelet

40 Estimated wavelet from S0

41 Air/elastic model --- On shore
Zs = 0 m F. S. 0m M.S. 1 m Elastic Layer P Velocity (m/s) S Velocity (m/s) Density (kg/m3) 1 340 3 2 2200 1200 2000

42 Reference wave prediction in air/earth: P wave component
Input data P Predicted Reference wave P0 P-P0 Rayleigh wave

43 Reference wave prediction in air/earth: S wave component
Input data S Predicted Reference wave S0 S-S0 Rayleigh wave

44 The elastic Green’s theorem method
Summary The elastic Green’s theorem method Predicts reference wave Estimates the wavelet Removes the ground roll without damaging the reflection data

45 Discussion & Future research
Data requirements ( Weglein & Secrest 1990; Weglein, Keho & Secrest 1990; Corrigan, Weglein & Thompson 1991 )

46 Discussion & Future research
Back out near surface properties (L. Tang et al.)

47 Discussion & Future research
Extend to near surface with lateral variance

48

49 Thank you Comments/Questions?

50 Appendix

51 For isotropic homogeneous medium

52 (ux,uz) space to (P,S) space
For isotropic homogenous medium (Weglein and Stolt 1992, Zhang 2006)

53

54 For actual medium (inhomogeneous)

55 For actual medium (inhomogeneous)

56 Green’s Function Reference medium Air Boundary Elastic

57 Air Boundary Elastic P S

58 P Air Boundary Elastic S

59 Elastic Air Boundary S P

60 Boundary condition At two sides of the boundary (z=0)
(Aki & Richards, 2002) Air Boundary Elastic

61 The constitutive relation

62 The constitutive relation

63 The constitutive relation

64 Air Boundary at depth 0 Elastic P S

65

66 When z0, by using the boundary condition, The coefficients can be confirmed.
air elastic

67 Air Boundary at depth 0 Elastic P S

68 With boundary condition at z=0
air elastic

69 Air Boundary at depth 0 Elastic S P

70 With boundary condition at z=0
air elastic

71 If both source and receiver are below the boundary

72 Green’s theorem reference wavefield prediction derivation

73 Air Earth m.s. v e.s.

74 Green’s Second Identity

75 Green’s Second Identity

76

77 Reference wave prediction in (x, )

78 Reference wave prediction in (kx, )

79 Reference wave prediction in (kx, )

80 Reciprocity of Green’s function

81

82 Even, only real part left

83

84 Odd, only image part left

85 Appendix

86 Boundary condition (acoustic/elastic)
Displacement X: viscid is low along the boundary, can be discontinuous; Z: no cavitation in the earth along the boundary, continuous. Traction Same magnitudes and opposite directions;

87 At two side of the boundary (z=0)
Boundary condition Air Boundary Elastic At two side of the boundary (z=0)


Download ppt "Elastic Green's theorem preprocessing"

Similar presentations


Ads by Google