Download presentation
Presentation is loading. Please wait.
1
Elastic Green's theorem preprocessing
for on-shore internal multiple attenuation: theory and initial synthetic data tests Jing Wu* and Arthur B. Weglein May 28th, 2014 Austin, TX 1 1
2
( Bahareh Boustani et al. 2013 )
Problem ( Bahareh Boustani et al. 2013 ) Ground Roll (Rayleigh Wave)
3
( Bahareh Boustani et al. 2013 )
Problem Reference wave Green’s theorem Ground Roll (Rayleigh Wave) ( Bahareh Boustani et al. 2013 )
4
( Bahareh Boustani et al. 2013 )
Problem Elastic Green’s theorem Reference wave Ground Roll (Rayleigh Wave) ( Bahareh Boustani et al. 2013 )
5
Elastic Green’s theorem reference wave prediction
Theory of Elastic Green’s theorem reference wave prediction
6
Actual medium Experiment
Reference medium Perturbation Active source ( “Passive source” ) “Source”
7
Off-shore: reference medium
Air Water ( Acoustic ) F. S.
8
Off-shore: reference medium
M. S. F. S. Air Water ( Acoustic )
9
Off-shore: reference medium + “source”
Earth M. S. F. S. Air Water ( Acoustic )
10
Off-shore: reference wave
M. S. F. S. Earth Air Water ( Acoustic ) ( Weglein and Secrest 90; Weglein 02; J. Zhang 05, 06, 07; Mayhan 12, 13; L. Tang 13 )
11
Off-shore: reference wave
M. S. F. S. Earth Air Water ( Acoustic ) ( Weglein and Secrest 90; Weglein 02; J. Zhang 05, 06, 07; Mayhan 12, 13; L. Tang 13 )
12
On-shore: reference medium
Elastic F. S. Air
13
On-shore: reference medium
M. S. F. S. Elastic Air
14
On-shore: reference medium + “source”
Elastic M. S. F. S. Air Earth
15
On-shore: reference wave
M. S. F. S. Elastic Air Earth
16
On-shore: reference wave
M. S. F. S. Elastic Air Earth
17
On-shore: reference wave
M. S. F. S. Elastic Air Earth
18
On-shore: reference wave prediction in (x,)
19
On-shore: reference wave prediction in (x,)
( Stolt & Weglein 1992, 2012 )
20
On-shore: reference wave prediction in (x,)
( Stolt & Weglein 1992, 2012 )
21
M. S. F. S. Elastic Air
22
F. S. Elastic Air M. S.
23
F. S. Elastic Air M. S.
24
F. S. Elastic Air M. S.
25
F. S. Elastic Air M. S.
26
F. S. Elastic Air M. S.
27
F. S. Elastic Air M. S.
29
On-shore: reference wave prediction in (kx,)
Assuming M.S. is horizontal
30
On-shore: reference wave prediction in (kx,)
M. S. F. S. Elastic Air Earth
31
Wavelet Estimation or
32
Numerical Evaluation
33
Water (acoustic) /elastic model --- OBC
Zs = -10 m O. B. 0m M.S. 1 m Elastic Water Layer P Velocity (m/s) S Velocity (m/s) Density (kg/m3) 1 1500 1000 2 1700 700 2000
34
Water (acoustic) /elastic model --- OBC
Zs = -10 m O. B. 0m M.S. 1 m Elastic Water Layer P Velocity (m/s) S Velocity (m/s) Density (kg/m3) 1 1500 1000 2 1700 700 2000
35
Reference wave prediction in water/earth: P wave component
Scholte wave Input data P Predicted Reference wave P0 P-P0
36
Actual wavelet
37
Estimated wavelet from P0
38
Reference wave prediction in water/earth: S wave component
Input data S Predicted Reference wave S0 S-S0 Scholte wave
39
Actual wavelet
40
Estimated wavelet from S0
41
Air/elastic model --- On shore
Zs = 0 m F. S. 0m M.S. 1 m Elastic Layer P Velocity (m/s) S Velocity (m/s) Density (kg/m3) 1 340 3 2 2200 1200 2000
42
Reference wave prediction in air/earth: P wave component
Input data P Predicted Reference wave P0 P-P0 Rayleigh wave
43
Reference wave prediction in air/earth: S wave component
Input data S Predicted Reference wave S0 S-S0 Rayleigh wave
44
The elastic Green’s theorem method
Summary The elastic Green’s theorem method Predicts reference wave Estimates the wavelet Removes the ground roll without damaging the reflection data
45
Discussion & Future research
Data requirements ( Weglein & Secrest 1990; Weglein, Keho & Secrest 1990; Corrigan, Weglein & Thompson 1991 )
46
Discussion & Future research
Back out near surface properties (L. Tang et al.)
47
Discussion & Future research
Extend to near surface with lateral variance
49
Thank you Comments/Questions?
50
Appendix
51
For isotropic homogeneous medium
52
(ux,uz) space to (P,S) space
For isotropic homogenous medium (Weglein and Stolt 1992, Zhang 2006)
54
For actual medium (inhomogeneous)
55
For actual medium (inhomogeneous)
56
Green’s Function Reference medium Air Boundary Elastic
57
Air Boundary Elastic P S
58
P Air Boundary Elastic S
59
Elastic Air Boundary S P
60
Boundary condition At two sides of the boundary (z=0)
(Aki & Richards, 2002) Air Boundary Elastic
61
The constitutive relation
62
The constitutive relation
63
The constitutive relation
64
Air Boundary at depth 0 Elastic P S
66
When z0, by using the boundary condition, The coefficients can be confirmed.
air elastic
67
Air Boundary at depth 0 Elastic P S
68
With boundary condition at z=0
air elastic
69
Air Boundary at depth 0 Elastic S P
70
With boundary condition at z=0
air elastic
71
If both source and receiver are below the boundary
72
Green’s theorem reference wavefield prediction derivation
73
Air Earth m.s. v e.s.
74
Green’s Second Identity
75
Green’s Second Identity
77
Reference wave prediction in (x, )
78
Reference wave prediction in (kx, )
79
Reference wave prediction in (kx, )
80
Reciprocity of Green’s function
82
Even, only real part left
84
Odd, only image part left
85
Appendix
86
Boundary condition (acoustic/elastic)
Displacement X: viscid is low along the boundary, can be discontinuous; Z: no cavitation in the earth along the boundary, continuous. Traction Same magnitudes and opposite directions;
87
At two side of the boundary (z=0)
Boundary condition Air Boundary Elastic At two side of the boundary (z=0)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.