Presentation is loading. Please wait.

Presentation is loading. Please wait.

Roots of polynomials.

Similar presentations


Presentation on theme: "Roots of polynomials."β€” Presentation transcript:

1 Roots of polynomials

2 FM Roots of polynomials: Quartics
KUS objectives BAT Derive and use the relationships between the roots of quartic equations Starter: Solve π‘₯π‘₯π‘₯given that one root is 𝑧=1βˆ’π‘– π‘₯π‘₯π‘₯ π‘₯=π‘₯π‘₯π‘₯=βˆ’2±𝑖

3 π‘Ž π‘₯ 4 +𝑏 π‘₯ 3 +𝑐 π‘₯ 2 +𝑑π‘₯+𝑒=0 has up to four roots .
Notes π‘Ž π‘₯ 4 +𝑏 π‘₯ 3 +𝑐 π‘₯ 2 +𝑑π‘₯+𝑒=0 has up to four roots . 𝒂 π‘₯ 4 +𝒃 π‘₯ 3 +𝒄 π‘₯ 2 +𝒅π‘₯+𝒆=π‘Ž π‘₯βˆ’π›Ό π‘₯βˆ’π›½ π‘₯βˆ’π›Ύ π‘₯βˆ’π›Ώ 𝛼, 𝛽, 𝛾,𝛿 are the roots =… =π‘Ž π‘₯ 4 βˆ’π‘Ž 𝛼+𝛽+𝛾+𝛿 π‘₯ 3 +π‘Ž 𝜢𝜷+𝜢𝜸+𝜢𝜹+𝜷𝜸+𝜷𝜹+𝜸𝜹 π‘₯ 2 π‘Ž 𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 π‘₯+π‘Žπ›Όπ›½π›Ύπ›Ώ In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž Equate the coefficients 𝛼+𝛽+𝛾+𝛿 =βˆ’ 𝑏 π‘Ž And 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 = 𝑐 π‘Ž And 𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 =βˆ’ 𝑑 π‘Ž And 𝛼𝛽𝛾𝛿 = 𝑒 π‘Ž

4 WB C1a The quartic equation π‘₯ 4 +2 π‘₯ 3 +𝑝 π‘₯ 2 +π‘žπ‘₯βˆ’60=0 has roots ∝,𝛽, 𝛾, 𝛿
Given that 𝛾=βˆ’2+4𝑖 and Ξ΄= 𝛾 βˆ— a) show that ∝+π›½βˆ’2= and that 𝛼𝛽+3=0 Hence find all the roots of the quartic and the values of p and q 𝛼+𝛽+𝛾+𝛿 =βˆ’ 𝑏 π‘Ž Gives 𝛼+𝛽+ βˆ’2+4𝑖 + βˆ’2βˆ’4𝑖 =βˆ’2 Gives 𝛼+π›½βˆ’2=0 QED (1) 𝛼𝛽𝛾𝛿= 𝑒 π‘Ž Gives 𝛼𝛽 βˆ’2+4𝑖 βˆ’2βˆ’4𝑖 =βˆ’ (2) Substitute (1) into (2) Gives 𝛼(2βˆ’π›Ό) βˆ’2+4𝑖 βˆ’2βˆ’4𝑖 =βˆ’60 𝛼 2βˆ’π›Ό (20)=βˆ’60 𝛼 2 βˆ’2π›Όβˆ’3=0 (π›Όβˆ’3)(𝛼+1)=0 so 𝛼=3, βˆ’1 𝛽=βˆ’1, 3 So the roots are 3, βˆ’1, βˆ’2Β±4𝑖

5 Given that 𝛾=βˆ’2+4𝑖 and Ξ΄= 𝛾 βˆ— a) show that ∝+π›½βˆ’2=0 and that 𝛼𝛽+3=0
WB C1b The quartic equation π‘₯ 4 +2 π‘₯ 3 +𝒑 π‘₯ 2 +𝒒π‘₯βˆ’60=0 has roots ∝,𝛽, 𝛾, 𝛿 Given that 𝛾=βˆ’2+4𝑖 and Ξ΄= 𝛾 βˆ— a) show that ∝+π›½βˆ’2= and that 𝛼𝛽+3=0 b) Hence find all the roots of the quartic and the values of p and q In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž So the roots are 3, βˆ’1, βˆ’2+4𝑖, βˆ’2βˆ’4𝑖 So 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 = 𝑐 π‘Ž Gives 𝑝= βˆ’3 + βˆ’6+12𝑖 + βˆ’6βˆ’12𝑖 + 2βˆ’4𝑖 + 2+4𝑖 + 20 𝑝=9 So 𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 =βˆ’ 𝑑 π‘Ž gives βˆ’π‘ž= 6βˆ’12𝑖 𝑖 βˆ’20 =52 So π‘ž=βˆ’52

6 WB C The d NOW DO Ex 4C

7 self-assess One thing learned is – One thing to improve is –

8 END


Download ppt "Roots of polynomials."

Similar presentations


Ads by Google