Download presentation
Presentation is loading. Please wait.
Published byCaroline Bois Modified over 5 years ago
1
IF YOU ARE GIVEN A VELOCITY IN THE PROBLEM, IT IS USUALLY vi !!!!!!!!
Projectile Trix IF YOU ARE GIVEN A VELOCITY IN THE PROBLEM, IT IS USUALLY vi !!!!!!!! If an object is projected horizontally …… .... θ = 0° If an object lands at the same height from which it was projected …… .... Δdy = 0 For a projectile to travel the maximum horizontal distance ….. …..θ = 45° thus viy = 0 and vx = vi
2
1) Given: Δdy = viyt + ½gt2 Δdy = -61 m Δdx = 13 m g = -9.8 m/s2 θ= 0°
-61 = 0t + ½(-9.8)t2 61 m g = -9.8 m/s2 -61 = -4.9t2 θ= 0° 12.4 = t2 viy = 0 m/s 3.53 s = t 13 m vx = vi = ? m/s Δdx = vxt vx = 3.7 m/s 13 = vx(3.53)
3
viy = vi sinθ = 98 (sin 53°) = 78.3 m/s
2) Given: vi = 98 m/s θ= 53° viy = vi sinθ = 98 (sin 53°) = 78.3 m/s vx = vi cosθ = 98 (cos 53°) = 59.0 m/s g = -9.8 m/s2 Δdy = 0 m (lands at the same height from which it was launched) Δdy = viyt + ½gt2 Δdy = viyt + ½gt2 (max height at half the time) 0 = 78.3t + ½(-9.8)t2 0 = 78.3t – 4.9t2 4.9t2 = 78.3t +4.9t2 +4.9t2 Δdy max = 78.3(8) + ½(-9.8)(8)2 4.9t 4.9t Δdy max= 310 m 16 sec = t Δdx = vxt Δx = (59.0)(16) Δdx = 944 m
4
3) Given: Δdy = viyt + ½gt2 Δdy = -1.225 m Δdx = 0.40 m g = -9.8 m/s2
-1.225= 0t + ½(-9.8)t2 g = -9.8 m/s2 = -4.9t2 θ= 0° 0.25 = t2 viy = 0 m/s 0.50 s = t vx = vi = ? m/s Δdx = vxt vx = 0.80 m/s 0.40 = vx(0.50)
5
4) Given: Δdy = viyt + ½gt2 Δdy = -176.4 m Δdx = vxt vi= 22 m/s
-176.4= 0t + ½(-9.8)t2 Δdx = (22)(6) g = -9.8 m/s2 = -4.9t2 θ= 0° 36 = t2 Δdx = 132 m viy = 22(sin 0) = 0 m/s 6 s = t vx = 22 (cos 0) = 22 m/s Δdy = viyt + ½gt2 5) Given: viy= 350 (sin0) = 0 m/s -1500= 0t + ½(-9.8)t2 θ= 0° vx = 350 (cos 0 ) = 350 m/s vi= 350 m/s -1500 = -4.9t2 Δdy = m 17.5 s = t 306 = t2 g = -9.8 m/s2
6
6) Horizontal speed is constant everywhere Vertical speed is largest at the lowest point and smallest (zero) at the top Projectiles only accelerate in the vertical direction, so the acceleration is constant and down everywhere (gravity)
7
viy = vi sinθ = 50 (sin 45°) = 35.4 m/s
7) Given: vi = 50 m/s θ= 45° viy = vi sinθ = 50 (sin 45°) = 35.4 m/s vx = vi cosθ = 50 (cos 45°) = 35.4 m/s g = -9.8 m/s2 Δdy = 0 m (identical landing ramp) Δdy = viyt + ½gt2 0 = 35.4t – 4.9t2 0 = 35.4t + ½(-9.8)t2 +4.9t2 +4.9t2 4.9t2 = 35.4t 4.9t 4.9t 7.2 sec = t Δdx = vxt Δdx = (35.4)(7.2) Δdx = 255 m
8
viy = vi sinθ = 20 (sin 40°) = 12.9 m/s
8) Given: vi = 20 m/s θ= 40° 20 m viy = vi sinθ = 20 (sin 40°) = 12.9 m/s vx = vi cosθ = 20 (cos 40°) = 15.3 m/s g = -9.8 m/s2 Δdx = vxt 20 = (15.3)(t) Δdx = 20 m Δdy = viyt + ½gt2 1.3 sec = t Δdy = 8.5 m Δdy = 12.9(1.3) + ½(-9.8)(1.3)2 9) Given: Δdy = viyt + ½gt2 θ= 0° viy= 0 cm/s vx = vi = 20 cm/s -120= 0t + ½(-980)t2 Δdy = -120 cm 0.5 s = t Δx = 10 cm Δdx = vxt g = -980 cm/s2 Δdx = (20)(0.5)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.