Presentation is loading. Please wait.

Presentation is loading. Please wait.

8. Solution of Linear Differential Equations: f(t): Input,

Similar presentations


Presentation on theme: "8. Solution of Linear Differential Equations: f(t): Input,"— Presentation transcript:

1 8. Solution of Linear Differential Equations: f(t): Input,
u(t): Output Example 8.1 If f(t)=est then u(t)= H(s)est Transfer Function: where H(s) is the transfer function which transforms the input to the output s3H(s)est+4s2H(s)est+14sH(s)est+20H(s)est=3est+sest a=[1,4,14,20];roots(a) (s3+4s2+14s+20)H(s)=3+s Eigenvalues: -1±3i, -2 Exponential/Harmonic Input: s= i; hs=(s+3)/(s^3+4*s^2+14*s+20); abs(hs), angle(hs) RESONANCE

2 H(s) Laplace Transform: x(t) y(t) Y(s)=X(s) H(s) Δ(s)=1 1
Final value theorem: Impulse function Δ(s)=1 u(t): Step function 1

3 Inverse Laplace transform of H(s)
Impulse Response: Inverse Laplace transform of H(s) Eigenvalues: a=[1,4,14,20];roots(a) -1±3i, -2 (Partial fraction expansion): p1=[1,3]; p2=[1,4,14,20]; [r,p,k]=residue(p1,p2) r(1)= i, r(2)= i, r(3)=0.1 z= i 2*abs(z) phase(z) ξ= (s=-1±3i), suitable values of Δt=0.099 and t∞=6.283

4 ξ=0. 3162 (s=-1±3i), use Δt=0. 099 and t∞=6
ξ= (s=-1±3i), use Δt=0.099 and t∞=6.283 to plot the response h(t) clc;clear; t=0:0.099:6.283; yt=0.3801*exp(-t).*cos(3*t-1.837)+0.1*exp(-2*t) plot(t,yt)

5 y(t)  Inverse Laplace Transform of Y(s)
Step Input Response: y(t)  Inverse Laplace Transform of Y(s) Singular Points (Eigenvalues) are -1±3i , -2 and s=0 Partial fraction expansion: p1=[1,3]; p2=[1,4,14,20,0]; [r,p,k]=residue(p1,p2) r(1)= i, r(2)= i, r(3)=-0.05, r(4)=0.15 Final value theorem: yss=0.15

6 clc;clear; t=0:0.099:6.283; yt=0.1202*exp(-t).*cos(3*t )-0.05*exp(-2*t)+0.15; plot(t,yt)

7 Solution due to the Initial Conditions
(Homogeneous Solution): f=0 t=0 da p1=[-1.2,-2.3,-9.9]; p2=[1,4,14,20]; [r,p,k]=residue(p1,p2) r(1)= i, r(2)= i, r(3)=-1.01

8

9 a) Find the output θ(t) for yA(t)=0.2e-3tcos(17t-1.8)
Problem: For the mechanical sysem given in the figure, yA is input and θ is output. Take m1=250 kg, m2=350 kg, k=37000 N/m, c=1500 Ns/m and L1=1.2 m. The governing differential equation of the system is given as m1, L1 θ yA m2 k c a) Find the output θ(t) for yA(t)=0.2e-3tcos(17t-1.8) Solution: yA(t)=est and θ(t)= H(s)est s=-3+17i ; h=(1800*s+44400)/(624*s^2+2160*s+53280) abs(h) angle(h)


Download ppt "8. Solution of Linear Differential Equations: f(t): Input,"

Similar presentations


Ads by Google