Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 2.3: End Behavior of Polynomial Functions

Similar presentations


Presentation on theme: "Section 2.3: End Behavior of Polynomial Functions"β€” Presentation transcript:

1 Section 2.3: End Behavior of Polynomial Functions

2 Polynomial Function Definition: Let n be a nonnegative integer and let π‘Ž 0 , π‘Ž 1 , π‘Ž 2 ,…, π‘Ž π‘›βˆ’1 , π‘Ž 𝑛 be real numbers with π‘Ž 𝑛 β‰  0. The function given by 𝑓 π‘₯ = π‘Ž 𝑛 π‘₯ 𝑛 + π‘Ž π‘›βˆ’1 π‘₯ π‘›βˆ’1 +…+ π‘Ž 2 π‘₯ 2 + π‘Ž 1 π‘₯+ π‘Ž 0 is a polynomial function of degree n. The leading coefficient is π‘Ž 𝑛 .

3 Even Degree Positive Coefficient
π‘₯β†’βˆ’βˆž 𝑓 π‘₯ β†’+∞ π‘₯β†’+∞,

4 Even Degree negative Coefficient
π‘₯β†’βˆ’βˆž 𝑓 π‘₯ β†’βˆ’βˆž π‘₯β†’+∞,

5 Odd Degree Positive Coefficient
π‘₯β†’βˆ’βˆž 𝑓 π‘₯ β†’βˆ’βˆž π‘₯β†’+∞, 𝑓 π‘₯ β†’+∞

6 Odd Degree Negative Coefficient
π‘₯β†’βˆ’βˆž 𝑓 π‘₯ β†’+∞ π‘₯β†’+∞, 𝑓 π‘₯ β†’βˆ’βˆž

7 Summary: π’™β†’βˆ’βˆž 𝒙→+∞ Degree Even Positive 𝑓 π‘₯ β†’+∞ Negative 𝑓 π‘₯ β†’βˆ’βˆž Odd
Leading Coefficient π’™β†’βˆ’βˆž 𝒙→+∞ Even Positive 𝑓 π‘₯ β†’+∞ Negative 𝑓 π‘₯ β†’βˆ’βˆž Odd

8 Local Extrema and Zeros of a Polynomial Function
A polynomial function of degree 𝑛… Has at most π‘›βˆ’1 local extrema. Example: 𝑓 π‘₯ = π‘₯ 4 3 extrema A polynomial function of degree 𝑛… Has at most 𝑛 zeros. Example: 𝑓 π‘₯ = π‘₯ 3 3 zeros

9 Multiplicity of a Zero If 𝑓 is a polynomial function and π‘₯βˆ’π‘ π‘š is a factor of f but π‘₯βˆ’π‘ π‘š+1 is not, then 𝑐 is a zero of multiplicity π’Ž of 𝑓. Odd: The graph crosses the axis at (𝑐,0). Even: The graph kisses the axis (𝑐,0). Example: π‘₯βˆ’ π‘₯+1 2 =0 π‘₯=2β†’multiplicity of 3β†’oddβ†’crosses π‘₯=βˆ’1β†’multiplicity of 2β†’evenβ†’kisses

10 Graph of: 𝑓 π‘₯ = π‘₯βˆ’ π‘₯+1 2


Download ppt "Section 2.3: End Behavior of Polynomial Functions"

Similar presentations


Ads by Google