Download presentation
Presentation is loading. Please wait.
Published byJune Reeves Modified over 5 years ago
1
Exercise Find the prime factorization of 700. 22 • 52 • 7
2
Exercise Find the prime factorization of 144. 24 • 32
3
Exercise Simplify (xy)2. x2y2
4
Exercise ab 2 Simplify a2b2
5
Exercise List the first twelve perfect squares.
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144
6
Fractions are simplified to lowest terms—no common factors in the numerator and denominator.
8 10 2 • 2 • 2 2 • 5 = 4 5 = Example:
7
Simplified radicals have no perfect square factors in the radicand.
8
√ 4 • √ 9 = 2 • 3 = 6 but √ 4 • √ 9 = √ 36 = 6
9
Product Law for Square Roots
For all a ≥ 0 and b ≥ 0, √ a • √ b = √ ab.
10
Example 1 Find √ 900. √ 900 = √ 9 × 100 = √ 9 √ 100 = 3 × 10 = 30
11
Example Simplify √ 2,500. 50
12
Example Simplify √ 360,000. 600
13
Example Simplify √ 49,000,000. 7,000
14
√ 40
15
Example 2 Simplify √ 48. √ 48 = √ 3 × 16 = √ 3 √ 16 = 4 √ 3
16
Example Simplify √ 72. 6 √ 2
17
Example Simplify √ 240. 4 √ 15
18
Example Simplify √ 200. 10 √ 2
19
√ 180
20
Example 3 Simplify √ 162. √ 162 = √ 2 • 3 • 3 • 3 • 3
= √ 2 √ 3 • 3 √ 3 • 3 = √ 2 • 3 • 3 = 9 √ 2
21
Example 4 Simplify √ 675. √ 675 = √ 3 • 3 • 3 • 5 • 5
= √ 3 √ 3 • 3 √ 5 • 5 = √ 3 • 3 • 5 = 15 √ 3
22
√ 6 √ 15
23
Example 5 Simplify √ 7 √ 3. √ 7 √ 3 = √ 7 • 3 = √ 21
24
Example 6 Simplify √ 14 √ 21. √ 14 √ 21 = √ 2 • 7 √ 3 • 7
= √ 2 • 3 • 72 = √ 72 √ 2 • 3 = 7 √ 6
25
By the Associative and Commutative Properties, a √ b • c √ d = ac √ bd.
26
Example 7 Simplify 2 √ 54 • 3 √ 15. 2 √ 54 • 3 √ 15 = 6 √ 54 • 15
= 6 √ 2 • 3 • 3 • 3 • 3 • 5 = 6 • 3 • 3 √ 2 • 5 = 54 √ 10
27
Example Simplify √ 24 √ 54. 36
28
√ 36 √ 9 36 9
29
Quotient Law for Square Roots
If a and b are positive real numbers, = √a √b a b
30
Example 8 25 4 Simplify 25 4 = √25 √4 = 5 2
31
Example 9 √45 √5 Simplify √45 √5 = 45 5 = √ 9 = 3
32
Example 10 √18 √9 Simplify √18 √9 = 18 9 = √ 2
33
Exercise Simplify √ x2y2. Assume that x ≥ 0 and y ≥ 0. xy
34
Exercise Simplify √ x3y4. Assume that x ≥ 0 and y ≥ 0. xy2√ x
35
Exercise Under what circumstances is √ x2 = x true? x ≥ 0
36
Exercise Under what circumstances is √ x2 ≠ x true? x < 0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.