Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Unit Circle and Graphing

Similar presentations


Presentation on theme: "The Unit Circle and Graphing"— Presentation transcript:

1 The Unit Circle and Graphing
Section 2.1

2 The unit Circle When we defined the 6 functions we used any point(x,y) on the terminal side of the angle and we used the distance formula to find r. With the unit circle we will use (x,y) on the unit circle where the radius r is 1. So if 𝛼 is an angle in standard position whose terminal side intersects the unit circle at (x,y) then, sin 𝛼= y cos 𝛼= x tan 𝛼= 𝑦 𝑥 csc 𝛼= 1 𝑦 sec 𝛼= 1 𝑥 Sin 𝛼= 𝑥 𝑦 Provided no denominator is zero.

3 Evaluating trigonometric functions with the unit circle
We can use the mage to the left to evaluate the common angles. Sin 45° Cos( 2𝜋 3 ) Tan( 𝜋 2 ) Sec( 𝜋 3 )

4 Graphing the simplest Sine Functions
Sketch the graph of y=sin x on the interval [0,2𝜋] Make a table of values (select five key values) x O 𝝅 𝟐 𝝅 𝟑𝝅 𝟐 𝟐𝝅 Sin x 1 -1

5 Example Sketch the graph of y=4sin x on the interval [0,2𝜋]

6 Period

7 Graphing a sine function
Graph y=2sin x for x in the interval [-2𝜋, 2𝜋] and determine the range. x O 𝝅 𝟐 𝝅 𝟑𝝅 𝟐 𝟐𝝅 Sin x 1 -1 2 sin x 2 -2

8 Amplitude Amplitude – is the absolute value of half the difference between the minimum and maximum y values Find the amplitude for the function y = 2sin x Find the amplitude for the function y = 8 sin x

9 Graphing the simplest cosine function
Graph y = cos x x O 𝝅 𝟐 𝝅 𝟑𝝅 𝟐 𝟐𝝅 Cos x 1 -1

10 Transformations of the graph
The amplitude of y=A sin x or y= A cos x is 𝐴 Phase shift of the graph of y=sin (x-C) or y=sin (x-C) is C

11 Example Name the amplitude, phase shift and range of the graph.

12 Example Name the amplitude, phase shift and range of the graph.

13 Horizontal shift For y=sin (x) + D or y=cos (x) + D where D<0 is downward and D>0 is upward Graph of y=cos(x-pi/4)+2

14 Questions


Download ppt "The Unit Circle and Graphing"

Similar presentations


Ads by Google