Download presentation
Presentation is loading. Please wait.
1
Using Properties of Logarithms
3
Example Use the product rule to expand each logarithmic expression. ๐๐๐ 3 9ยท5 ๐๐๐ 1000๐ฅ
4
Solution Use the product rule to expand each logarithmic expression. ๐๐๐ 3 9ยท5 = ๐๐๐ 3 9 ยท ๐๐๐ 3 5 ๐๐๐ 1000๐ฅ =๐๐๐ ๐๐๐ ๐ฅ
6
Example Use the quotient rule to expand each logarithmic expression. ๐๐๐ ๐ฅ ๐๐๐ ๐ฅ 8 ๐๐ ๐ 3 7
7
Solution Use the quotient rule to expand each logarithmic expression. ๐๐๐ ๐ฅ = ๐๐๐ โ ๐๐๐ 5 ๐ฅ ๐๐๐ ๐ฅ 8 =๐๐๐ ๐ฅ โ๐๐๐ 8 ๐๐ ๐ =๐๐ ๐ 3 โ๐๐ 7
9
Example Use the power rule to expand each logarithmic expression. ๐๐๐ ๐๐๐ 2 8๐ฅ 4 ๐๐๐ ๐ฅ ๐๐ 6๐ 5
10
Solution Use the power rule to expand each logarithmic expression. ๐๐๐ =2 ๐๐๐ 5 7 ๐๐๐ 2 8๐ฅ 4 =4 ๐๐๐ 2 8๐ฅ ๐๐๐ ๐ฅ = 1 2 ๐๐๐๐ฅ ๐๐ 6๐ 5 =5๐๐ 6๐
11
Expanding Logarithmic Expressions
13
Study Tip
14
Example Use logarithmic properties to expand each expression as much as possible. ๐๐๐ ๐ ๐ฅ ๐ง ๐๐๐ ๐ฆ 3 ๐๐ 10 ๐ ๐๐๐
15
Solutions Use logarithmic properties to expand each expression as much as possible. ๐๐๐ ๐ ๐ฅ ๐ง 2 =2 ๐๐๐ ๐ ๐ฅ ๐๐๐ ๐ ๐ง =2 ๐๐๐ ๐ ๐ฅ+ ๐๐๐ ๐ ๐ง ๐๐๐ ๐ฆ 3 =3 ๐๐๐ 5 25โ ๐๐๐ 5 ๐ฆ =3 2โ ๐๐๐ 5 ๐ฆ =6โ3 ๐๐๐ 5 ๐ฆ ๐๐ 10 ๐ =๐๐ 10 โ๐๐ ๐ =๐๐ 10 โ1 ๐๐๐ =๐๐๐ ๐๐๐ 10 =๐๐๐
16
Condensing Logarithmic Expressions
18
Example Write as a single logarithm (condense) ๐๐๐ ๐๐๐ ๐๐๐ 6๐ฅ โ๐๐๐ 6 2 ๐๐๐ 3 9โ ๐๐๐ 3 27 ๐๐ ๐ฅโ2 +5๐๐ ๐ฅ
19
Solution Write as a single logarithm (condense)
๐๐๐ ๐๐๐ = ๐๐๐ ๐๐๐ 6๐ฅ โ๐๐๐ 6=๐๐๐ 6๐ฅ 6 =๐๐๐ ๐ฅ 2 ๐๐๐ 3 9โ ๐๐๐ 3 27= ๐๐๐ = ๐๐๐ 3 3 =1 ๐๐ ๐ฅโ2 +5๐๐ ๐ฅ=๐๐ ๐ฅโ2 ยท ๐ฅ 5 =๐๐ ๐ฅ 5 ๐ฅโ2
20
Question Can you simplify this any further?
๐๐๐ ๐๐๐ = ๐๐๐
21
Question Can you simplify this any further?
๐๐๐ ๐๐๐ = ๐๐๐ How about this: ๐๐๐ ๐๐๐ = ๐๐๐ ๐๐๐ = ๐๐๐ ๐๐๐ = = 7 2
22
The Change-of-Base Property
23
The Change-of-Base Property
Consider ๐๐๐ 6 ๐ฅ. Can we find the value? One option would be to write this as a common logarithm and use our calculator: Let ๐๐๐ 6 ๐ฅ=๐. Then 6 ๐ =๐ฅ Take the log of both sides ๐๐๐ 6 ๐ = ๐๐๐ ๐ฅ What we want is a โ thatโs equal to the value of ๐๐๐ 6 ๐ฅ ๐ยท๐๐๐ 6 = ๐๐๐ ๐ฅ Solve for a ๐ = ๐๐๐ ๐ฅ ๐๐๐ So ๐๐๐ 6 ๐ฅ= ๐๐๐ ๐ฅ ๐๐๐ 6
25
Graphing Calculator
26
Example Use common logarithms to evaluate ๐๐๐ 4 12 (Use change of base and your calculator)
27
Solution Use common logarithms to evaluate ๐๐๐ 4 12 (Use change of base and your calculator) ๐๐๐ 4 12= ๐๐๐ 12 ๐๐๐ 4 โ1.792
28
(a) (b) (c) (d)
29
๐๐๐ 9 81 ๐ฅ = ๐๐๐ 9 81 โ ๐๐๐ 9 ๐ฅ = ๐๐๐ 9 9 2 โ ๐๐๐ 9 ๐ฅ =2โ ๐๐๐ 9 ๐ฅ
Answer is b (a) (b) (c) (d)
30
(a) (b) (c) (d)
31
(a) (b) (c) (d) ๐๐๐ 3 27๐ฆ =๐๐๐ 3 3 ๐ฆ =๐๐๐ 3+๐๐๐ 3 ๐ฆ Answer is b
๐๐๐ 3 27๐ฆ =๐๐๐ 3 3 ๐ฆ =๐๐๐ 3+๐๐๐ 3 ๐ฆ Answer is b Well, actually, answer is ๐๐๐ ๐๐๐ ๐ฆ (a) (b) (c) (d)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.