Download presentation
Presentation is loading. Please wait.
Published byΠΠ΅ΠΎΡΠ³ΠΈΠΉ ΠΠ΅Π»Π°Π²ΠΈΠ½ Modified over 5 years ago
1
Objective Please copy on your packet
Students will perform polynomial operations to be able to provide an equivalent form of the polynomial.
2
QUICK Review Looking at your objective, what words stand out and do you know what they mean? Rewrite in an equivalent form: 5π+3πβ2π+7π Rewrite in an Equivalent form: 3(π₯β7) Provide one at a time the following problems to students. Have the conversation about the step needed in order to complete the rewrite in the equivalent form asked. In this case students are simplify the provided expression. Students should not only write their responses to the questions on the slide, but should note the operations in which they had to perform to get them to their final result.
3
exponent monomial Vocabulary
A ___________________ is a number, a variable, or the product of a number and one or more variable with whole number ____________________. exponent
4
term polynomial Vocabulary
A _______________ is a monomial or a sum or monomials, each called_________ of the polynomial. term
5
variable decrease left right Leading coefficient polynomial Vocabulary
When a _____________ is written so that exponents of a __________ _____________ from ________ to ___________ the coefficient of the first term is called the _________________________________ variable decrease left right Leading coefficient
6
MODEL #1 2 π₯ 3 + π₯ 2 β5π₯+12
7
degree The _______________ is also the maximum of potential zeros of a polynomial function.
8
Todayβs Activity On the next few slides are going to be some examples of polynomials that need to be rewritten in an equivalent form. Once the problem appears on the board you will be responsible (Individually) to provide an equivalent form on your white boards. (Approx. 90 seconds) Then you will share your response with the person you are sitting next to. Compare your answers. Determine which answer you like the best and determine why. (Approx. 90 Seconds) And be ready explain your answer to the class.
9
Examples Menu Example 1- Adding Polynomials
Example 2 β Subtracting Polynomials Example 3- Multiplying Polynomials A B C D Not all problems need to be complete. Modeling a problem prior to the students attempting on their own is a reasonable expectation. PARCC RELATED
10
Adding Polynomial Example 1 A
2 π₯ 3 β5 π₯ 2 +π₯ +(2 π₯ 2 + π₯ 3 β1) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
11
Adding Polynomial Example 1 B
3 π₯ 2 +π₯β6 +( π₯ 2 +4π₯+10) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
12
Adding Polynomial Example 1 C
β2 π₯ 2 +3π₯β π₯ 3 +(3 π₯ 2 + π₯ 3 β12) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
13
Adding Polynomial Example 1 D
4 π₯ 3 +2 π₯ 2 β4 +(β3π₯+ π₯ 3 +π₯) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
14
Subtracting Polynomial Example 1 A
4 π 2 +5 β(β2 π 2 +2πβ4) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
15
Subtracting Polynomial Example 1 B
4 π₯ 2 βπ₯+5 β(3 π₯ 2 βπ₯β8) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
16
Subtracting Polynomial Example 1 C
2 π 2 β8 β(3 π 2 β4π+1) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
17
Subtracting Polynomial Example 1 D
5 π¦ 2 +2π¦β4 β(β π¦ 2 +4π¦β3) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
18
Multiplying Polynomial Example 1 A
π₯(7 π₯ 2 +4) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
19
Multiplying Polynomial Example 1 B
(π+3)(2π+1) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
20
Multiplying Polynomial Example 1 C
(4πβ1)(π+5) 0:28 0:29 0:31 0:27 0:30 0:25 0:22 0:23 0:24 0:32 0:26 0:34 0:39 0:40 0:41 0:42 0:38 0:37 0:21 0:35 0:36 0:33 0:19 0:05 0:06 0:07 0:08 0:04 0:03 1:30 End 0:01 0:02 0:09 0:10 0:16 0:17 0:18 1:30 0:15 0:14 0:11 0:12 0:13 0:20 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 0:44 1:07 0:51 0:52 0:53 0:54 0:50 0:49 0:45 0:46 0:47 0:48 1:06 0:55 1:02 1:03 1:04 1:05 0:56 1:01 0:57 1:00 0:58 0:59 Menu
21
Multiplying Polynomial Example 1 D
(π₯+4)(2π₯β1) Ask student to complete this as the exit ticket and submit prior to the end of the class period. Assign homework based on todayβs instruction. 0:27 0:28 0:30 0:26 0:29 0:23 0:21 0:22 0:31 0:24 0:25 0:33 0:38 0:39 0:40 0:41 0:37 0:36 0:20 0:34 0:35 0:32 0:18 0:04 0:05 0:06 0:07 0:03 0:02 1:30 End 0:01 0:08 0:09 0:15 0:16 0:17 0:42 0:14 0:13 0:10 0:11 0:12 0:19 0:43 1:14 1:15 1:16 1:17 1:13 1:12 1:08 1:09 1:10 1:11 1:18 1:19 1:26 1:27 1:28 1:29 1:25 1:24 1:20 1:21 1:22 1:23 1:07 1:06 0:50 0:51 0:52 0:53 0:49 0:48 0:44 0:45 0:46 0:47 0:54 0:55 1:02 1:03 1:04 1:05 1:01 1:00 0:56 0:57 0:58 0:59 1:30 Menu
22
PARCC Related Question (Sample Problem)
Rewrite the expression β3π π+πβ5 +4 β2π+2π +π π+3πβ7 to find the coefficients of each term. Fill in the coefficients on the appropriate lines below. _______ π 2 +_______ π 2 +______ππ+_______π+_______π
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.