Presentation is loading. Please wait.

Presentation is loading. Please wait.

Point Charge Potential

Similar presentations


Presentation on theme: "Point Charge Potential"β€” Presentation transcript:

1 Point Charge Potential
Coulomb’s Law and Sheets of Charge Constant-field vs. Point-charge Potential Point-charge Force, Field, PE, V expressions Point-charge graphical examples Point-charge Potential examples Point-charge PE examples

2 Review - Coulomb’s Law and Sheets of Charge
Coulomb’s Law for point charge 𝐸= π‘˜π‘„ π‘Ÿ 2 In region between parallel plates 𝐸= 𝑄 πœ€ π‘œ 𝐴 = 𝜎 πœ€ π‘œ 𝑄=π‘β„Žπ‘Žπ‘Ÿπ‘”π‘’ π‘œπ‘› π‘’π‘Žπ‘β„Ž π‘π‘™π‘Žπ‘‘π‘’ 𝜎=π‘β„Žπ‘Žπ‘Ÿπ‘”π‘’ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘› π‘’π‘Žπ‘β„Ž π‘π‘™π‘Žπ‘‘π‘’ 𝐴=π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘’π‘Žπ‘β„Ž π‘π‘™π‘Žπ‘‘π‘’ πœ€ π‘œ = 1 4πœ‹π‘˜ = 8.85βˆ™ 10 βˆ’12 𝐢 2 𝑁 π‘š 2 Note: now the field is constant

3 Coulomb’s Law and Sheets of Charge
Coulomb’s Law Lots of integral calculus = Constant fields 𝐸= π‘˜π‘„ π‘Ÿ 𝑑π‘₯ 𝜎 πœ€ π‘œ

4 Constant-field vs. Point-charge Potential
For constant fields. 𝐸=π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 𝑉=𝐸𝑑 Point charges, must use calculus. 𝐸= π‘˜π‘„ π‘Ÿ 2 𝑉= π‘˜π‘„ π‘Ÿ 2 π‘‘π‘Ÿ = π‘˜π‘„ π‘Ÿ

5 Electric Potential around Point Charge
Positive point charge 𝑉= +π‘˜π‘ž π‘Ÿ Negative point charge 𝑉= βˆ’π‘˜π‘ž π‘Ÿ

6 Point charge Electric Potential - Example 1
What is the electric potential 12.5 cm from a 5.00 Β΅C point charge? 𝑉= π‘˜π‘ž π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 βˆ™ 10 βˆ’6 𝐢 π‘š =3.6 βˆ™ 𝐽 𝐢 =3.6 βˆ™ 𝑉 A point chargeΒ QΒ creates an electric potential of +113Β V at a distance ofΒ 30Β cm. What isΒ Q? 𝐽 𝐢 =𝑉= π‘˜π‘ž π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 2 q 0.3 π‘š π‘ž=3.77βˆ™ 10 βˆ’9 𝐢=3.77 𝑛𝐢

7 Point charge Electric Potential - Example 2
Around +20ΞΌC 𝑉= +π‘˜π‘ž π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 βˆ™ 10 βˆ’6 𝐢 0.5 π‘š =3.6βˆ™ 𝑉 Around -20ΞΌC 𝑉= βˆ’π‘˜π‘ž π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 2 βˆ’20βˆ™ 10 βˆ’6 𝐢 0.5 π‘š =βˆ’3.6βˆ™ 𝑉

8 Point charge Electric Potential - Example 3
Just add as scalars. Simple! 𝑉= +π‘˜π‘ž π‘Ÿ + βˆ’π‘˜π‘ž π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 βˆ™ 10 βˆ’6 𝐢 0.3 π‘š + 9βˆ™ 𝑁 π‘š 2 𝐢 2 βˆ’50βˆ™ 10 βˆ’6 𝐢 0.6 π‘š =1.5βˆ™ π‘‰βˆ’0.75βˆ™ 𝑉=7.5βˆ™ 10 5

9 How does calculating E from V β€œwork”?
Calc potential, then field 𝐸= βˆ†π‘‰ βˆ†π‘₯ Calculate topo lines, then slope π‘ π‘™π‘œπ‘π‘’= βˆ†π‘’π‘™π‘’π‘£π‘Žπ‘‘π‘–π‘œπ‘› βˆ†π‘₯

10 Example – Problem 22 𝑉= π‘˜(+3𝑄) 𝐿 + 𝐾(βˆ’2𝑄) 𝐿 + π‘˜(𝑄) 2 𝐿
𝑉= π‘˜(+3𝑄) 𝐿 + 𝐾(βˆ’2𝑄) 𝐿 + π‘˜(𝑄) 2 𝐿 Just add as scalars, no X-Y table (Physicists always calculate V first, then 𝐸=βˆ’ πœ•π‘‰ πœ•π‘₯ , etc)

11 Electric Potential vs. PE
Potential is PE without 2nd charge 𝑉=π‘˜ π‘ž 1 π‘Ÿ 𝑃𝐸=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ Electric potential around (+) charge Defined positive (volcanic peak) (+) test charge (falls away) (-) test charge (falls down in) Electric potential around (-) charge Defined negative (inverted peak/sinkhole) (+) test charge (falls down in) (-) test charge (falls away) + - PE + - PE

12 Point charge PE – Example 1
Initially r β†’ ∞ PE=0 At 0.5 m separation 𝑃𝐸=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 βˆ™ 10 βˆ’6 𝐢 20βˆ™ 10 βˆ’6 𝐢 0.5 π‘š =1.08 𝐽 To bring together, you have to put 1.08 J in. If you allow to separate, you get 1.08 J out.

13 Point charge PE – Example 2
PE of both charges at .325 m 𝑃𝐸=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 2 βˆ’0.125βˆ™ 10 βˆ’6 𝐢 βˆ’1.6βˆ™ 10 βˆ’19 𝐢 π‘š =5.54βˆ™ 10 βˆ’16 𝐽 Yes, the ΞΌC charge recoils slightly, but we’ll ignore that. For electron, this all goes into KE 1 2 π‘š 𝑣 2 = βˆ™ 10 βˆ’31 π‘˜π‘” 𝑣 2 =5.54βˆ™ 10 βˆ’16 𝐽 𝑣=3.49βˆ™ π‘š/𝑠

14 Point charge PE – Example 3
First electron requires no work Second electron must do work against first electron W=βˆ†π‘ƒπΈ=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 2 βˆ’1.6βˆ™ 10 βˆ’19 𝐢 βˆ’1.6βˆ™ 10 βˆ’19 𝐢 10 βˆ’10 π‘š =2.3βˆ™ 10 βˆ’18 𝐽 Third electron must do work against first and second electrons W=βˆ†π‘ƒπΈ=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ +π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ =2.3βˆ™ 10 βˆ’18 𝐽 + 2.3βˆ™ 10 βˆ’18 𝐽 Grand total W=2.3βˆ™ 10 βˆ’18 𝐽 + 2.3βˆ™ 10 βˆ’18 𝐽+2.3βˆ™ 10 βˆ’18 𝐽=6.9βˆ™ 10 βˆ’18 𝐽

15 Point charge PE – Example 4
Initial configuration 𝑃𝐸=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ +π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 βˆ™ 10 βˆ’6 𝐢 0.5βˆ™ 10 βˆ’6 𝐢 π‘š + 9βˆ™ 𝑁 π‘š 2 𝐢 βˆ™ 10 βˆ’6 𝐢 0.5βˆ™ 10 βˆ’6 𝐢 π‘š =1.97 𝐽 Final configuration 𝑃𝐸=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ +π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ = 9βˆ™ 𝑁 π‘š 2 𝐢 βˆ™ 10 βˆ’6 𝐢 0.5βˆ™ 10 βˆ’6 𝐢 π‘š + 9βˆ™ 𝑁 π‘š 2 𝐢 βˆ™ 10 βˆ’6 𝐢 0.5βˆ™ 10 βˆ’6 𝐢 π‘š =4.50 𝐽 Difference =4.50 𝐽 βˆ’1.97 𝐽=2.53 𝐽

16 Potential and Field Field Potential +3ΞΌC -2C (+) on left, (-) on right
No cancellation between charges. Must be to right of weaker charge. Potential 1st Zero between charges 2nd Zero to right of weaker charge +3ΞΌC C

17 Potential and Field Field 3 π‘₯= 2 .05+π‘₯ Potential
π‘˜ 3πœ‡πΆ π‘₯ 2 βˆ’π‘˜ 2πœ‡πΆ π‘₯ 2 =0 π‘₯ = 2 π‘₯ 3 π‘₯= π‘₯ π‘₯= 2 (0.05) 3 βˆ’ 2 =22 π‘π‘š π‘‘π‘œ π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘“ βˆ’2πœ‡πΆ Potential π‘˜ 3πœ‡πΆ π‘₯ +π‘˜ βˆ’2πœ‡πΆ .05βˆ’π‘₯ = π‘₯=3 π‘π‘š π‘˜ 3πœ‡πΆ .05+π‘₯ +π‘˜ βˆ’2πœ‡πΆ π‘₯ = π‘₯=10 π‘π‘š +3ΞΌC C

18 Summary Chapter 16/17 Point charge problems
𝐹=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ 𝐹=π‘˜ π‘ž 1 π‘Ÿ 2 𝑃𝐸=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ 𝑉=π‘˜ π‘ž 1 π‘Ÿ Decision point Constant field problems 𝐹=π‘žπΈ 𝐸 𝑃𝐸=π‘žπΈπ‘‘ 𝑉=𝐸𝑑

19 Point charge PE - Examples
Problem 21, 24,

20 Force, Field, PE, V for point charges
Force/PE Field/EP Vector quantities Force 𝑭=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ 2 Field 𝑬=π‘˜ π‘ž 1 π‘Ÿ 2 Scalar quantities Potential Energy 𝑃𝐸=π‘˜ π‘ž 1 π‘ž 2 π‘Ÿ Electric Potential 𝑉=π‘˜ π‘ž 1 π‘Ÿ

21 Force, Field, PE, V for constant field
Force/PE Field/EP Vector quantities Force 𝑭=π‘žπ‘¬ Field 𝑬= 𝜎 πœ€ π‘œ Scalar quantities Potential Energy βˆ†π‘ƒπΈ=π‘žπΈβˆ†π‘₯ Electric Potential βˆ†π‘‰=πΈβˆ†π‘₯


Download ppt "Point Charge Potential"

Similar presentations


Ads by Google