Presentation is loading. Please wait.

Presentation is loading. Please wait.

Department of Mathematics & Physics

Similar presentations


Presentation on theme: "Department of Mathematics & Physics"โ€” Presentation transcript:

1 Department of Mathematics & Physics
General Physics 1 Vector Analysis Prof. MARLON FLORES SACEDON Department of Mathematics & Physics

2 Vector analysis Scalar Vector Physical Quantity โ€“ e.g. Time (t)
, temperature (T) , Mass (m) , distance (s) , density (ฯ) โ€“ specified by their magnitude only Vector โ€“ e.g. Force ( ๐น ) , Electric field ( ๐ธ ) , weight ( ๐‘ค ) , displacement ( ๐‘  ) โ€“ specified by their magnitude and direction

3 Vector analysis Scalar Vector Physical Quantity
are added by ordinary algebraic method โ€“ specified by their magnitude only Vector are added by geometric method โ€“ specified by their magnitude and direction

4 Vector analysis Vector addition or vector sum ๐‘ƒ 2 ๐‘ƒ 1
๐‘ƒ 3 Direction ๐‘ƒ 4 Total distance ๐‘ƒ 2 magnitude ๐‘ƒ 2 ๐‘ƒ 5 Total Displacement ๐‘ƒ 1 ๐‘ƒ 1 What is the total distance and total displacement from ๐‘ƒ 1 to ๐‘ƒ 5 ?

5 Vector analysis = V ๐‘‰ ๐ด = ๐‘‰ ๐ต =โˆ’ ๐ด Vector addition or vector sum
Note: The magnitude of vector ๐‘‰ is ๐‘‰ ๐‘œ๐‘Ÿ ๐‘‰ ๐‘ƒ 2 ๐‘ƒ 4 ๐‘ƒ 5 Vector ๐‘‰ = V ๐ด = ๐‘‰ ๐ต =โˆ’ ๐ด ๐‘ƒ 1 ๐‘ƒ 3 ๐‘ƒ 6 If vector V and vector A have the same magnitude, then the two vectors are equal. If vector B and vector A have the same magnitude but in opposite direction, then the two vectors are not equal.

6 Vector analysis + ๐ต + ๐ด โˆ’ ๐ถ =0 ๐ด ๐ต ๐ถ ๐ด + ๐ต = ๐ถ ๐ถ = ๐ด + ๐ต
Vector addition or vector sum Parallel vectors Anti-parallel vectors + ๐ต + ๐ด โˆ’ ๐ถ =0 ๐ด ๐ต ๐ถ ๐ด + ๐ต = ๐ถ This process is called Vector Algebra ๐ถ = ๐ด + ๐ต Vector Sum or Resultant of vectors A and B Expressing vector ๐ถ in terms of ๐ด and ๐ต NOTE: โ€œIn a close polygon the vector sum is zero.โ€

7 Vector analysis In Figure (above), expressed the following vectors.
๐‘ญ ๐‘ซ ๐‘ช ๐‘จ ๐‘ฎ ๐‘ฌ ๐‘ฉ ๐‘ฒ ๐‘ฏ Figure Example In Figure (above), expressed the following vectors. a) vector ๐‘ช in terms of vectors ๐‘ฌ , ๐‘ซ , and ๐‘ญ . + ๐‘ช + ๐‘ซ โˆ’ ๐‘ฌ + ๐‘ญ + ๐‘ฌ โˆ’ ๐‘ซ โˆ’ ๐‘ญ =๐ŸŽ

8 Vector analysis In Figure (above), expressed the following vectors.
๐‘ญ ๐‘ซ ๐‘ช ๐‘จ ๐‘ฎ ๐‘ฌ ๐‘ฉ ๐‘ฒ ๐‘ฏ Figure Example In Figure (above), expressed the following vectors. a) vector ๐‘ช in terms of vectors ๐‘ฌ , ๐‘ซ , and ๐‘ญ . ๐‘ช = ๐‘ฌ โˆ’ ๐‘ซ โˆ’ ๐‘ญ ANSWER

9 Vector analysis In Figure (above), expressed the following vectors.
๐‘ญ ๐‘ซ ๐‘ช ๐‘จ ๐‘ฎ ๐‘ฌ ๐‘ฉ ๐‘ฒ ๐‘ฏ Figure Example In Figure (above), expressed the following vectors. a) vector ๐‘ช in terms of vectors ๐‘ฌ , ๐‘ซ , and ๐‘ญ . + ๐‘ช + ๐‘ซ โˆ’ ๐‘ฌ + ๐‘ญ =๐ŸŽ ๐‘ช = ๐‘ฌ โˆ’ ๐‘ซ โˆ’ ๐‘ญ ANSWER b) vector ๐‘ฎ in terms of ๐‘ช , ๐‘ซ , ๐‘ฌ , and ๐‘ฒ . + ๐‘ฎ + ๐‘ฌ โˆ’ ๐‘ซ โˆ’ ๐‘ช + ๐‘ฒ =๐ŸŽ ๐‘ฎ = ๐‘ช + ๐‘ซ โ€“ ๐‘ฌ โ€“ ๐‘ฒ ANSWER

10 Vector analysis Graphical Method Analytical Method
Methods of finding Vector sum or resultant of forces Parallelogram Method Polygon Method Graphical Method Material needed: Triangular scale or ruler Protractor Writing paper and pencil Cosine law Method Component Method Analytical Method Material needed: calculator Writing paper and pen

11 Vector analysis Two forces Graphical Method Parallelogram Method ๐‘…
๐œƒ ๐›ฝ ๐›ฝ ๐น 2 ๐นโ€ฒ 2 ๐œƒ ๐น 1 ๐นโ€ฒ 1 ๐œƒ ๐›ฝ Two forces (Drawn to scale)

12 Vector analysis Two forces Graphical Method Polygon Method ๐น 2 ๐น 1
๐œƒ ๐›ฝ Two forces (Drawn to scale)

13 Vector analysis Two forces Graphical Method Polygon Method ๐‘… ๐น 2 ๐น 2
๐›ฝ ๐œƒ ๐น 1 ๐น 1 ๐œƒ ๐›ฝ ๐œƒ Two forces (Drawn to scale) This is Polygon method (Drawn to scale)

14 Vector analysis Two forces Analytical Method Cosine law Method ๐‘… ๐น 2
๐œƒ ๐›ฝ ๐น 2 ๐น 1 Equivalent polygon of vectors (Drawn not to scale)) ๐น 1 ๐›ฝ ๐œƒ ๐น 2 Two forces Drawn not to scale Apply law sines to solve for ๐›ผ: ๐‘ ๐‘–๐‘›๐›ผ ๐น 2 = ๐‘ ๐‘–๐‘› ๐œƒ+๐›ฝ ๐‘… ๐›ผ ๐›พ Magnitude of the Resultant R (apply law of cosines) ๐‘… or ๐‘…= ๐น ๐น 2 2 โˆ’2 ๐น 1 ๐น 2 cosโก(๐œƒ+๐›ฝ) Direction of the Resultant R ๐›พ= 180 ๐‘œ โˆ’๐œƒโˆ’๐›ผ

15 to be continuedโ€ฆ


Download ppt "Department of Mathematics & Physics"

Similar presentations


Ads by Google