Presentation is loading. Please wait.

Presentation is loading. Please wait.

Similar presentations


Presentation on theme: ""โ€” Presentation transcript:

1 ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) = ๐‘’ 2๐‘ฅ โˆ’1 ๐‘ฅ โ‰ˆ ๐‘“ 0 + ๐‘“ โ€ฒ 0 (๐‘ฅโˆ’0) ๐‘ฅ
Lesson: _____ Section Lโ€™Hรดpitalโ€™s Rule, Growth, & Dominance Limits of quotients can often be tricky to evaluate. For example: Direct substitution yields this โ€œindeterminate formโ€ which basically means we canโ€™t determine anything about the limit from this info. lim ๐‘ฅโ†’0 ๐‘’ 2๐‘ฅ โˆ’1 ๐‘ฅ = 0 0 Weโ€™ve had a few tricks up our sleeve in the past, such as canceling common factors, rationalizing, and breaking into cases, but none of those work here. ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) If we thing of this expression as we can use local linearity to explore the limit near zero. ๐’š= ๐’š ๐Ÿ +๐’Ž(๐’™โˆ’ ๐’™ ๐Ÿ ) โ‰ˆ 0+2 ๐‘’ (๐‘ฅ) ๐‘ฅ โ‰ˆ 2(๐‘ฅ) ๐‘ฅ โ‰ˆ 2 1 ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) = ๐‘’ 2๐‘ฅ โˆ’1 ๐‘ฅ โ‰ˆ ๐‘“ 0 + ๐‘“ โ€ฒ 0 (๐‘ฅโˆ’0) ๐‘ฅ lim ๐‘ฅโ†’0 ๐‘’ 2๐‘ฅ โˆ’1 ๐‘ฅ = 2 As x ๏ƒ  0, this approximation gets better and better, so

2 If direct substitution yields 0 0
Think about it: In general, if f(a) = 0, and g(a) = 0, we could use local linearization to rewrite the limit as follows: lim ๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ‰ˆ๐’‡(๐’‚)+๐’‡โ€ฒ(๐’‚)(๐’™โˆ’๐’‚) โ‰ˆ๐’ˆ(๐’‚)+๐’ˆโ€ฒ(๐’‚)(๐’™โˆ’๐’‚) โ‰ˆ๐ŸŽ+๐’‡โ€ฒ(๐’‚)(๐’™โˆ’๐’‚) โ‰ˆ๐ŸŽ+๐’ˆโ€ฒ(๐’‚)(๐’™โˆ’๐’‚) ๐’‡โ€ฒ(๐’‚)(๐’™โˆ’๐’‚) ๐’ˆโ€ฒ(๐’‚)(๐’™โˆ’๐’‚) โ‰ˆ = ๐‘“โ€ฒ(๐‘Ž) ๐‘”โ€ฒ(๐‘Ž) If direct substitution yields 0 0 we can still find the value of the limit by plugging into the derivatives instead! What is this telling us ????

3 Lโ€™Hรดpitalโ€™s Rule lim ๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) =
If f and g are differentiable, and ๐‘“ ๐‘Ž =๐‘” ๐‘Ž =0, and gโ€™(a) โ‰  0, then ๐‘“โ€ฒ(๐‘Ž) ๐‘”โ€ฒ(๐‘Ž) lim ๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) = Or, more generally, lim ๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) = lim ๐‘ฅโ†’๐‘Ž ๐‘“โ€ฒ(๐‘ฅ) ๐‘”โ€ฒ(๐‘ฅ) Dude, thatโ€™s my rule. Get your own! See p.215 ex. 2

4 Lโ€™Hรดpitalโ€™s Rule also applies to limits involving infinity!
Provided that f and g are differentiable: If lim ๐‘ฅโ†’๐‘Ž ๐‘“ ๐‘ฅ = ยฑโˆž and lim ๐‘ฅโ†’๐‘Ž ๐‘” ๐‘ฅ = ยฑโˆž or if lim ๐‘ฅโ†’โˆž ๐‘“ ๐‘ฅ = lim ๐‘ฅโ†’โˆž ๐‘” ๐‘ฅ = 0 or lim ๐‘ฅโ†’โˆž ๐‘“ ๐‘ฅ =ยฑโˆž ๐‘Ž๐‘›๐‘‘ lim ๐‘ฅโ†’โˆž ๐‘” ๐‘ฅ =ยฑโˆž We can use Lโ€™Hopitalโ€™s Rule! Then it is can be shown that lim ๐‘ฅโ†’๐‘Ž ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) = lim ๐‘ฅโ†’๐‘Ž ๐‘“ โ€ฒ (๐‘ฅ) ๐‘” โ€ฒ (๐‘ฅ) (provided that the limit on the right-hand side exists) See p.216 ex. 3,4,6 Stop it. Iโ€™m blushing.


Download ppt ""

Similar presentations


Ads by Google