Download presentation
Presentation is loading. Please wait.
1
Space-Saving Strategies for Computing Δ-points
Kun-Mao Chao (趙坤茂) Department of Computer Science and Information Engineering National Taiwan University, Taiwan
2
Δ-points S-(i, j): the best score of a path from (0, 0) to (i, j).
S+(i, j): the best score of a path from (i, j) to (M, N). Δ-points: S-(i, j) + S+(i, j) >= Δ S - S +
3
C G G A T C A T -3 -6 -9 -12 -15 -18 -21 -24 8 5 2 -1 -4 -7 -10 -13 3
Match: 8 Mismatch: -5 Gap symbol: -3 C G G A T C A T -3 -6 -9 -12 -15 -18 -21 -24 8 5 2 -1 -4 -7 -10 -13 3 7 4 1 -2 -5 9 6 10 -8 -11 -14 14 C T T A A C T optimal score
4
C T T A A C – T C G G A T C A T 8 – 5 –5 +8 -5 +8 -3 +8 = 14
8 – 5 – = 14 C G G A T C A T -3 -6 -9 -12 -15 -18 -21 -24 8 5 2 -1 -4 -7 -10 -13 3 7 4 1 -2 -5 9 6 10 -8 -11 -14 14 C T T A A C T
5
C G G A T C A T -3 -6 -9 -12 -15 -18 -21 -24 8 5 2 -1 -4 -7 -10 -13 3
Match: 8 Mismatch: -5 Gap symbol: -3 S- Matrix C G G A T C A T -3 -6 -9 -12 -15 -18 -21 -24 8 5 2 -1 -4 -7 -10 -13 3 7 4 1 -2 -5 9 6 10 -8 -11 -14 14 C T T A A C T
6
-21 C G G A T C A T -18 -15 C T T A A C T -12 -9 -6 -3 -24 Match: 8
Mismatch: -5 Gap symbol: -3 S+ Matrix C G G A T C A T -21 -18 -15 -12 -9 -6 -3 -24 C T T A A C T
7
Match: 8 Mismatch: -5 Gap symbol: -3 S+ Matrix C G G A T C A T 14 3 6 8 10 12 1 -10 -21 11 13 2 4 -7 -18 5 16 7 -4 -15 -1 -12 9 15 18 -9 -2 -6 -13 -3 -24 C T T A A C T
8
C G G A T C A T C T T A A C T Match: 8 Mismatch: -5 Gap symbol: -3
S- and S+ Matrix C G G A T C A T 14 -3 3 -6 6 -9 8 -12 10 -15 12 -18 1 -21 -10 -24 5 2 11 -1 13 -4 -7 4 -13 16 7 -2 -5 9 15 18 -8 -11 -14 C T T A A C T
9
C G G A T C A T C T T A A C T Match: 8 Mismatch: -5 S- and S+ Matrix
Gap symbol: -3 S- and S+ Matrix C G G A T C A T 14 -3 3 -6 6 -9 8 -12 10 -15 12 -18 1 -21 -10 -24 5 2 11 -1 13 -4 -7 4 -13 16 7 -2 -5 9 15 18 -8 -11 -14 C T T A A C T
10
Match: 8 Mismatch: -5 Gap symbol: -3 S- + S+ Matrix C G G A T C A T 14 -1 -2 -3 -17 -31 -45 13 12 11 1 -16 -15 -30 -29 C T T A A C T
11
Match: 8 Mismatch: -5 Gap symbol: -3 S- + S+ Matrix Δ = 14 C G G A T C A T 14 -1 -2 -3 -17 -31 -45 13 12 11 1 -16 -15 -30 -29 C T T A A C T
12
Match: 8 Mismatch: -5 Gap symbol: -3 S- + S+ Matrix Δ = 13 C G G A T C A T 14 -1 -2 -3 -17 -31 -45 13 12 11 1 -16 -15 -30 -29 C T T A A C T
13
The leftmost/rightmost Δ-paths
For simple scoring schemes, finding the leftmost Δ-path and the rightmost Δ-path is easy. For affine gap penalties, it is more complicated.
14
Two alignments may not intersect!
15
Method 1: O(MN) time; O(MN) space
16
Method 2: O(M2N) time; O(N) space
Each row takes O(MN) time. In total, O(M) x O(MN) = O(M2N) S + M
17
Method 3: O(MN) time; O(N) space
18
Method 4: O(MN log M) time; O(N log M) space
19
Method 4: O(MN log M) time; O(N log M) space (cont’d)
… O(log M) layers M O(N) O(N) O(N) O(N) O(N)
20
The computation of S-(i, j) and S+(i, j) inside a block
21
Method 5: O(MN log min {M, N}) time; O(M+N) space
22
C G G A T C A T -3 -6 -9 -12 -15 -18 -21 -24 8 5 2 -1 -4 -7 -10 -13 3
Match: 8 Mismatch: -5 Gap symbol: -3 S- Matrix C G G A T C A T -3 -6 -9 -12 -15 -18 -21 -24 8 5 2 -1 -4 -7 -10 -13 3 7 4 1 -2 -5 9 6 10 -8 -11 -14 14 C T T A A C T
23
Method 5: O(MN log min {M, N}) time; O(M+N) space (cont’d)
… O(log min {M, N}) layers M 4(M+N) 2(M+N) M+N 1/2(M+N) 1/4(M+N)
24
Method 6: O(MN log log min {M, N}) time; O(M+N) space
Real Size 1/25 1/23 N 1/210 1/25 1/22 M 1/29 1/219
25
Method 6 (cont’d) The width at layer i is M/22i+i-1
Partition Lines Number of Cuts M 4N 22 1 M/22 2N 2/1/22 = 23 2 M/22/23 = M/25 N 1/1/25 = 25 3 M/25/25 = M/210 N/2 1/2/1/210 = 29 4 M/210/29 = M/219 N/22 1/22/1/219 = 217 5 M/219/217 = M/236 N/23 1/23/1/236 = 233 6 M/236/233 = M/269 N/24 1/24/1/269 = 265
26
Method 7: O(1/ε MN) time; O(1/ε MεN) space Here we use ε= 1/2 to illustrate the idea.
Solve each M1/2N problem M1/2 S - S + M
27
Method 8: O(1/εMN) time; O(1/ε M1+ε+ N) space Here we use ε= 1/2 to illustrate the idea.
O(N) M Solve each M1/2M problem M1/2 S - S + M
28
Methods Method 1: O(MN) time; O(MN) space
Method 2: O(M2N) time; O(M) space Method 3: O(MN) time; O(M) space Method 4: O(MN log M) time; O(N log M) space Method 5: O(MN log min {M, N}) time; O(M+N) space Method 6: O(MN log log min {M, N}) time; O(M+N) space Method 7: O(1/εMN) time; O(1/ ε MεN) space Method 8: O(1/εMN) time; O(1/ε M1+ε+ N) space
29
Bonus points O(MN) time; O(M+N) space
o(MN log log min {M, N}) time; O(M+N) space O(1/εMN) time; o(1/ε M1+ε+N) space
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.