Download presentation
Presentation is loading. Please wait.
1
Photosynthesis and Cellular Respiration
2
Outline I. Photosynthesis II. Cellular Respiration A. Introduction
B. Reactions II. Cellular Respiration
3
Photosynthesis Method of converting sun energy into chemical energy usable by cells Autotrophs: self feeders, organisms capable of making their own food Photoautotrophs: use sun energy e.g. plants photosynthesis-makes organic compounds (glucose) from light Chemoautotrophs: use chemical energy e.g. bacteria that use sulfide or methane chemosynthesis-makes organic compounds from chemical energy contained in sulfide or methane
4
Photosynthesis Photosynthesis takes place in specialized structures inside plant cells called chloroplasts Light absorbing pigment molecules e.g. chlorophyll
5
Overall Reaction 6CO2 + 6 H2O + light energy → C6H12O6 + 6O2
Carbohydrate made is glucose
6
Light-dependent Reactions
Overview: light energy is absorbed by chlorophyll molecules-this light energy excites electrons and boosts them to higher energy levels. They are trapped by electron acceptor molecules that are poised at the start of a neighboring transport system. The electrons “fall” to a lower energy state, releasing energy that is harnessed to make ATP
7
Energy Shuttling Recall ATP: used for cellular energy. Molecule with 3 phosphate groups bonded to it, when removing the third phosphate group, lots of energy liberated= superb molecule for shuttling energy around within cells.
8
Energy Shuttling Other energy shuttles-coenzymes (nucleotide based molecules): move electrons and protons around within the cell NADP+, NADPH NAD+, NADP FAD, FADH2
9
Light-dependent Reactions
Photosystem: light capturing unit, contains chlorophyll, the light capturing pigment Electron transport system: sequence of electron carrier molecules that shuttle electrons, energy released to make ATP Electrons in chlorophyll must be replaced so that cycle may continue-these electrons come from water molecules, Oxygen is liberated from the light reactions Light reactions yield ATP and NADPH used to fuel the reactions of the Calvin cycle (light independent or dark reactions)
12
The Z-Scheme
13
Calvin Cycle (light independent)
ATP and NADPH generated in light reactions used to fuel the reactions which take CO2 and break it apart, then reassemble the carbons into glucose.
15
Harvesting Chemical Energy
So we see how energy enters food chains (via autotrophs) we can look at how organisms use that energy to fuel their bodies. Plants and animals both use products of photosynthesis (glucose) for metabolic fuel Heterotrophs: must take in energy from outside sources, cannot make their own e.g. animals When we take in glucose (or other carbs), proteins, and fats-these foods don’t come to us the way our cells can use them
16
Cellular Respiration Overview
Transformation of chemical energy in food into chemical energy cells can use: ATP These reactions proceed the same way in plants and animals. Process is called cellular respiration Overall Reaction: C6H12O6 + 6O2 → 6CO2 + 6H2O
17
Cellular Respiration Overview
Breakdown of glucose begins in the cytoplasm: the liquid matrix inside the cell At this point life diverges into two forms and two pathways Anaerobic cellular respiration (aka fermentation) Aerobic cellular respiration
18
C.R. Reactions Glycolysis
Series of reactions which break the 6-carbon glucose molecule into two 3-carbon pyruvate molecules Process is an ancient one-all organisms from simple bacteria to humans perform it the same way Yields 2 ATP molecules for every one glucose molecule broken down Yields 2 NADH per glucose molecule
19
Aerobic Cellular Respiration
Oxygen required=aerobic 2 more sets of reactions which occur in a specialized structure within the cell called the mitochondria 1. Kreb’s Cycle 2. Electron Transport Chain
20
Kreb’s Cycle Completes the breakdown of glucose
Takes the pyruvate (3-carbons) and breaks it down, the carbon and oxygen atoms end up in CO2 and H2O Hydrogens and electrons are stripped and loaded onto NAD+ and FAD to produce 8 NADH and 2 FADH2 Production of only 2 more ATP but loads up the coenzymes with H+ and electrons which move to the 3rd stage
22
Electron Transport Chain
Electron carriers loaded with electrons and protons from the Kreb’s cycle move to this chain-like a series of steps (staircase). As electrons drop down stairs, energy released to form a total of 32 ATP Oxygen waits at bottom of staircase, picks up electrons and protons and in doing so becomes water
24
Energy Tally 36 ATP for aerobic vs. 2 ATP for anaerobic
Glycolysis ATP Kreb’s ATP Electron Transport 32 ATP 36 ATP Anaerobic organisms can’t be too energetic but are important for global recycling of carbon
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.