Download presentation
Presentation is loading. Please wait.
1
Multi-block analysis of olive oil data
Datasets: MIR, NIR, AG, C16_C24 & Origins
2
Data pretreatment 1) Eliminate samples with NaNs -reduced to 106 samples in each dataset 2) MIR spectra : cut out CO2 peak 3) NIR spectra : use first 1000 points 4) NIR & MIR spectra : SNV transform 5) NIR & MIR spectra : 43-point Savitsky-Golay derivative 6) C16_C24 (18,4) in reduced data set changed from 0.7 to 0.07
3
MIR NIR
4
Variable selection using PLS_ComDim
Between MIR & C16_C24 : 171 X blocks (106 x 5) 1 Y block (106 x 14) 6 Common Dimensions Plot scores vs. concentrations Saliences R scores/concentration
8
Variable selection using PLS_ComDim
Between NIR & C16_C24 : 180 X blocks (106 x 5) 1 Y block (106 x 14) 6 Common Dimensions Plot scores vs. concentrations Saliences R scores/concentration
12
Variable selection using PLS_ComDim
Between MIR & AG : 171 X blocks (106 x 5) 1 Y block (106 x 20) 6 Common Dimensions Plot scores vs. concentrations Saliences R scores/concentration
16
Variable selection using PLS_ComDim
Between NIR & AG : 180 X blocks (106 x 5) 1 Y block (106 x 20) 6 Common Dimensions Plot scores vs. concentration Saliences R scores/concentration
20
Variable selection using PLS_ComDim
Between MIR & Origin : 171 X blocks (106 x 5) 1 Y block (106 x 3) 6 Common Dimensions Plot scores vs. concentrations Saliences R scores/concentration
25
Variable selection using PLS_ComDim
Between NIR & Origin : 180 X blocks (106 x 5) 1 Y block (106 x 3) 6 Common Dimensions Plot scores vs. concentration Saliences R scores/concentration
30
Variable selection using PLS_ComDim
Between subsets of MIR1, MIR2, NIR & Origin: 3 X blocks (106 x 200; 100; 356) 1 Y block (106 x 3) 6 Common Dimensions Plot scores vs. concentration Saliences R scores/concentration
36
Variable selection using PLS_ComDim
Between subsets of MIR1, MIR2, NIR, C16_C24, AG & Origin: 5 X blocks (106 x 200; 100; 356; 14; 20) 1 Y block (106 x 3) 6 Common Dimensions C16_C24, AG were not scaled Plot scores vs. concentration Saliences R scores/concentration
42
Confusion matrices (3 LVs)
MIR Confusions = NIR Confusions = MIRNIR Confusions = All Confusions = PLSDA Confusions =
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.