Presentation is loading. Please wait.

Presentation is loading. Please wait.

I can plot a quadratic graph

Similar presentations


Presentation on theme: "I can plot a quadratic graph"β€” Presentation transcript:

1 I can plot a quadratic graph
I can draw up a table from the equation with no problems (Yes/need more work/No) I can fill up a table by substituting values of x in each row and then adding the columns to find the corresponding values of y From the table, I know which two values I need to plot I know how to plan where to draw the axes according to my values of x and y (Yes/need more work/No) I know how to plot the points and join to form the curve

2 Notice the β€˜symmetry’ in the numbers
π’š= 𝒙 𝟐 +π’™βˆ’πŸ” 𝒙 -4 -3 -2 -1 1 2 3 𝒙 𝟐 +𝒙 -6 π’š = 𝒙 𝟐 +π’™βˆ’πŸ” (βˆ’4) 2 16 9 (βˆ’3) 2 4 (βˆ’2) 2 (βˆ’1) 2 1 (0) 2 1 (1) 2 4 (2) 2 9 (3) 2 βˆ’4 βˆ’3 βˆ’2 βˆ’1 1 2 3 12 6 2 2 6 12 βˆ’6 βˆ’6 βˆ’6 βˆ’6 βˆ’6 βˆ’6 βˆ’6 βˆ’6 6 βˆ’4 βˆ’6 βˆ’6 βˆ’4 6 Notice the β€˜symmetry’ in the numbers

3 Notice the β€˜symmetry’ in the numbers
π’š=πŸ”βˆ’ 𝒙 𝟐 𝒙 -3 -2 -1 1 2 3 πŸ” βˆ’ 𝒙 𝟐 π’š = πŸ”βˆ’ 𝒙 𝟐 6 6 6 6 6 6 6 βˆ’ (βˆ’1) 2 βˆ’ (βˆ’0) 2 βˆ’92 βˆ’(βˆ’3) 2 βˆ’42 βˆ’ (βˆ’2) 2 βˆ’12 02 βˆ’12 βˆ’ (1) 2 βˆ’42 βˆ’ (2) 2 βˆ’92 βˆ’ (3) 2 βˆ’3 2 5 6 5 2 βˆ’3 Notice the β€˜symmetry’ in the numbers

4 Notice the β€˜symmetry’ in the numbers
π’š= πŸπ’™ 𝟐 +πŸπ’™βˆ’πŸ— 𝒙 -3 -2 -1 1 2 𝟐 𝒙 𝟐 +πŸπ’™ -9 π’š = 2 𝒙 𝟐 +πŸπ’™βˆ’πŸ— 18 2(9) 2(βˆ’3) 2 8 2(4) 2(βˆ’2) 2 2(1) 2 2(βˆ’1) 2 2(0) 2(0) 2 2 2(1) 2(1) 2 8 2(4) 2 (2) 2 2(0) βˆ’6 2(βˆ’3) βˆ’4 2(βˆ’2) βˆ’2 2(βˆ’1) 2 2(1) 2(2) 4 4 4 12 12 βˆ’9 βˆ’9 βˆ’9 βˆ’9 βˆ’9 βˆ’9 3 βˆ’5 βˆ’9 βˆ’9 βˆ’5 3 Notice the β€˜symmetry’ in the numbers

5 Notice the β€˜symmetry’ in the numbers
π’š= βˆ’π’™ 𝟐 βˆ’πŸπ’™+𝟏𝟎 𝒙 -5 -4 -3 -2 -1 1 2 3 βˆ’ 𝒙 𝟐 βˆ’πŸπ’™ +10 π’š = βˆ’ 𝒙 𝟐 βˆ’πŸπ’™+𝟏𝟎 βˆ’25 βˆ’(βˆ’5) 2 βˆ’16 βˆ’(βˆ’4) 2 βˆ’9 βˆ’(βˆ’3) 2 βˆ’4 βˆ’(βˆ’2) 2 βˆ’1 βˆ’(βˆ’1) 2 βˆ’(0) 2 βˆ’1 βˆ’(1) 2 βˆ’4 βˆ’(2) 2 βˆ’(3) 2 βˆ’9 10 βˆ’2(βˆ’5) 8 βˆ’2(βˆ’4) 6 βˆ’2(βˆ’3) 4 βˆ’2(βˆ’2) 2 βˆ’2(βˆ’1) βˆ’2(0) βˆ’2 βˆ’2(1) βˆ’4 βˆ’2(2) βˆ’6 βˆ’2(3) +10 +10 +10 +10 +10 +10 +10 +10 +10 βˆ’5 2 7 10 11 10 7 2 βˆ’5 Notice the β€˜symmetry’ in the numbers

6 To be able to plot a system of graphs

7 Plotting a linear graph & a quadratic graph
When a straight line graph and a quadratic graph are plotted on the same axes, we call it a system of linear and quadratic graphs They can meet at: 2 points 1 point No point The points where they meet are called points of intersection

8 Points of Intersection
Points of intersection are those points where the graphs are equal to each other In this example, the graphs drawn are: π’š= 𝒙 𝟐 βˆ’πŸ“π’™+πŸ• π’š=πŸπ’™+𝟏 At the points of intersection (1,3) and (6,13) the graphs are equal 𝒙 𝟐 βˆ’πŸ“π’™+πŸ•=πŸπ’™+𝟏 π‘₯=1 π‘œπ‘Ÿ π‘₯=6 Let us see an example on Geogebra You can solve a complicated looking equation by drawing two graphs and reading their POIs

9 CW/HW A) Plot these two graphs: Linear Graph οƒ  π’š=πŸ’
Quadratic Graph οƒ  π’š= 𝒙 𝟐 +πŸ‘π’™ (𝒙 values : -5 to 2) Write down the points of intersection B) Plot these two graphs: Linear Graph οƒ  π’š=π’™βˆ’πŸ Quadratic Graph οƒ  π’š= 𝒙 𝟐 βˆ’πŸ’π’™βˆ’πŸ (𝒙 values : -2 to 6) C) Plot these two graphs: Linear Graph οƒ  π’š=βˆ’π’™+𝟏 Quadratic Graph οƒ  π’š= 𝒙 𝟐 +π’™βˆ’πŸ (𝒙 values: -4 to 3) CW/HW


Download ppt "I can plot a quadratic graph"

Similar presentations


Ads by Google