Presentation is loading. Please wait.

Presentation is loading. Please wait.

Phys 13 General Physics 1 Vector Product MARLON FLORES SACEDON.

Similar presentations


Presentation on theme: "Phys 13 General Physics 1 Vector Product MARLON FLORES SACEDON."β€” Presentation transcript:

1 Phys 13 General Physics 1 Vector Product MARLON FLORES SACEDON

2 Vector product Product of vectors Scalar product or Dot product
Vector product or Cross product Ex. 𝐴 dot 𝐡 is equal to 𝐴 βˆ™ 𝐡 Ex. 𝐴 cross 𝐡 is equal to 𝐴 Γ— 𝐡

3 Vector product Product of vectors: The scalar product or Dot product
𝐴 βˆ™ 𝐡 to be the magnitude of 𝐴 multiplied by the component of 𝐡 in the direction of 𝐴 . 𝐡 βˆ™ 𝐴 to be the magnitude of 𝐡 multiplied by the component of 𝐴 in the direction of 𝐡 . π΅π‘π‘œπ‘ πœƒ 𝐴 𝐡 πœƒ πœƒ 𝐴 𝐡 π΄π‘π‘œπ‘ πœƒ 𝐡 βˆ™ 𝐴 =π΅π΄π‘π‘œπ‘ πœƒ 𝐴 βˆ™ 𝐡 =π΄π΅π‘π‘œπ‘ πœƒ 𝐴 βˆ™ 𝐡 = 𝐴 𝐡 π‘π‘œπ‘ πœƒ 𝐡 βˆ™ 𝐴 = 𝐡 𝐴 π‘π‘œπ‘ πœƒ So, therefore: 𝐴 βˆ™ 𝐡 = 𝐡 βˆ™ 𝐴

4 𝐴 βˆ™ 𝐡 =π΄π΅π‘π‘œπ‘ πœƒ Vector product
Product of vectors: The scalar product or Dot product So, the definition of Scalar or Dot product is, 𝐴 βˆ™ 𝐡 =π΄π΅π‘π‘œπ‘ πœƒ The scalar product of unit vectors 𝑖 βˆ™ 𝑖 = 𝑖 𝑖 π‘π‘œπ‘ πœƒ =(1)(1) π‘π‘œπ‘  0 π‘œ =1 𝑗 βˆ™ 𝑗 =1 π‘˜ βˆ™ π‘˜ =1 𝑖 βˆ™ 𝑗 =0 𝑗 βˆ™ 𝑖 =0 𝑗 βˆ™ π‘˜ =0 𝑖 βˆ™ π‘˜ =0 π‘˜ βˆ™ 𝑖 =0 π‘˜ βˆ™ 𝑗 =0

5 Vector product Product of vectors: The scalar product or Dot product
Suppose: Find: 𝐴 βˆ™ 𝐡 𝐴 = 𝐴 π‘₯ 𝑖 + 𝐴 𝑦 𝑗 + 𝐴 𝑧 π‘˜ 𝐡 = 𝐡 π‘₯ 𝑖 + 𝐡 𝑦 𝑗 + 𝐡 𝑧 π‘˜ Then: 𝐴 βˆ™ 𝐡 = 𝐴 π‘₯ 𝑖 + 𝐴 𝑦 𝑗 + 𝐴 𝑧 π‘˜ βˆ™ 𝐡 π‘₯ 𝑖 + 𝐡 𝑦 𝑗 + 𝐡 𝑧 π‘˜ 1 1 = 𝐴 π‘₯ 𝐡 π‘₯ 𝑖 βˆ™ 𝑖 + 𝐴 π‘₯ 𝐡 𝑦 𝑖 βˆ™ 𝑗 + 𝐴 π‘₯ 𝐡 𝑧 𝑖 βˆ™ π‘˜ + 𝐴 𝑦 𝐡 π‘₯ 𝑗 βˆ™ 𝑖 + 𝐴 𝑦 𝐡 𝑦 𝑗 βˆ™ 𝑗 + 𝐴 𝑦 𝐡 𝑧 𝑗 βˆ™ π‘˜ 1 + 𝐴 𝑧 𝐡 π‘₯ π‘˜ βˆ™ 𝑖 + 𝐴 𝑧 𝐡 𝑦 π‘˜ βˆ™ 𝑗 + 𝐴 𝑧 𝐡 𝑧 π‘˜ βˆ™ π‘˜ 𝐴 βˆ™ 𝐡 = 𝐴 π‘₯ 𝐡 π‘₯ + 𝐴 𝑦 𝐡 𝑦 + 𝐴 𝑧 𝐡 𝑧 Therefore: So: ABcosΞΈ= 𝐴 π‘₯ 𝐡 π‘₯ + 𝐴 𝑦 𝐡 𝑦 + 𝐴 𝑧 𝐡 𝑧 πœƒ= π‘π‘œπ‘  βˆ’1 𝐴 π‘₯ 𝐡 π‘₯ + 𝐴 𝑦 𝐡 𝑦 + 𝐴 𝑧 𝐡 𝑧 𝐴𝐡 Angle between vectors

6 Vector product Product of vectors: The scalar product or Dot product 𝐻
𝑧 π‘₯ 𝑦 Example: Find: Given: 𝐺 =9 𝑖 βˆ’3 𝑗 + π‘˜ a) 𝐺 βˆ™ 𝐻 𝐻 𝐻 = 𝑖 βˆ’6 π‘˜ b) Angle between vectors 𝐺 and 𝐻 βˆ’6 π‘˜ πœƒ Solution: 𝑖 9 𝑖 𝐺 βˆ’3 𝑗 a) 𝐺 βˆ™ 𝐻 = 𝐺 π‘₯ 𝐻 π‘₯ + 𝐺 𝑦 𝐻 𝑦 + 𝐺 𝑧 𝐻 𝑧 π‘˜ = 9 1 + βˆ’3 0 +(1)(βˆ’6) =3 ANSWER π‘π‘œπ‘  βˆ’1 𝐺 π‘₯ 𝐻 π‘₯ + 𝐺 𝑦 𝐻 𝑦 + 𝐺 𝑧 𝐻 𝑧 𝐺𝐻 b) πœƒ= =π‘π‘œπ‘  βˆ’ βˆ’ βˆ’6 2 =π‘π‘œπ‘  βˆ’1 [ ] πœƒ= π‘œ ANSWER

7 𝐴 π‘₯ 𝐡 = 𝐴 𝐡 π‘ π‘–π‘›πœƒ 𝑛 Vector product
Product of vectors: The vector product or Cross product 𝑛 𝑛 𝐡 𝐴 πœƒ 𝐡 𝐴 πœƒ 𝐡 π‘ π‘–π‘›πœƒ 𝐡 π‘₯ 𝐴 What is 𝐴 cross 𝐡 is equal to 𝐴 Γ— 𝐡 ? ANSWER: 𝐴 Γ— 𝐡 to be the magnitude of 𝐴 multiplied by the component of 𝐡 perpendicular to 𝐴 , then multiplied by a unit vector 𝑛 which is normal to swipe area of the two vectors. 𝐡 π‘₯ 𝐴 =βˆ’ 𝐴 π‘₯ 𝐡 The property of vector product. 𝐴 π‘₯ 𝐡 = 𝐴 𝐡 π‘ π‘–π‘›πœƒ 𝑛

8 Product of vectors: The vector product or Cross product
The vector product of unit vectors 𝑖 π‘₯ 𝑖 =1 1 𝑠𝑖𝑛0 𝑛 =0 𝑖 π‘₯ 𝑗 =1 1 𝑠𝑖𝑛90 π‘˜ = π‘˜ 𝑗 π‘₯ 𝑖 =1 1 𝑠𝑖𝑛90 π‘˜ =βˆ’ π‘˜ π‘˜ π‘₯ π‘˜ =0 𝑖 π‘₯ 𝑖 =0 𝑗 π‘₯ 𝑗 =0 𝑖 π‘₯ 𝑗 = π‘˜ 𝑗 π‘₯ 𝑖 =βˆ’ π‘˜ π‘˜ π‘₯ 𝑗 =βˆ’ 𝑖 𝑖 π‘₯ π‘˜ =βˆ’ 𝑗 𝑗 π‘₯ π‘˜ = 𝑖 π‘˜ π‘₯ 𝑖 = 𝑗

9 Vector product Product of vectors: The vector product or Cross product
Suppose: Find: 𝐴 π‘₯ 𝐡 𝐴 = 𝐴 π‘₯ 𝑖 + 𝐴 𝑦 𝑗 + 𝐴 𝑧 π‘˜ 𝐡 = 𝐡 π‘₯ 𝑖 + 𝐡 𝑦 𝑗 + 𝐡 𝑧 π‘˜ Evaluate: 𝐴 π‘₯ 𝐡 = 𝐴 π‘₯ 𝑖 + 𝐴 𝑦 𝑗 + 𝐴 𝑧 π‘˜ π‘₯ 𝐡 π‘₯ 𝑖 + 𝐡 𝑦 𝑗 + 𝐡 𝑧 π‘˜ π‘˜ βˆ’ 𝑗 = 𝐴 π‘₯ 𝐡 π‘₯ 𝑖 π‘₯ 𝑖 + 𝐴 π‘₯ 𝐡 𝑦 𝑖 π‘₯ 𝑗 + 𝐴 π‘₯ 𝐡 𝑧 𝑖 π‘₯ π‘˜ βˆ’ π‘˜ 𝑖 + 𝐴 𝑦 𝐡 π‘₯ 𝑗 π‘₯ 𝑖 + 𝐴 𝑦 𝐡 𝑦 𝑗 π‘₯ 𝑗 + 𝐴 𝑦 𝐡 𝑧 𝑗 π‘₯ π‘˜ + 𝐴 𝑧 𝐡 π‘₯ π‘˜ π‘₯ 𝑖 𝑗 + 𝐴 𝑧 𝐡 𝑦 π‘˜ π‘₯ 𝑗 βˆ’ 𝑖 + 𝐴 𝑧 𝐡 𝑧 π‘˜ π‘₯ π‘˜ = 𝐴 π‘₯ 𝐡 𝑦 π‘˜ + 𝐴 π‘₯ 𝐡 𝑧 βˆ’ 𝑗 + 𝐴 𝑦 𝐡 π‘₯ βˆ’ π‘˜ + 𝐴 𝑦 𝐡 𝑧 𝑖 + 𝐴 𝑧 𝐡 π‘₯ 𝑗 + 𝐴 𝑧 𝐡 𝑦 βˆ’ 𝑖 𝐴 π‘₯ 𝐡 = 𝐴 𝑦 𝐡 𝑧 𝑖 + 𝐴 𝑧 𝐡 π‘₯ 𝑗 + 𝐴 π‘₯ 𝐡 𝑦 π‘˜ βˆ’ 𝐴 𝑦 𝐡 π‘₯ π‘˜ βˆ’ 𝐴 𝑧 𝐡 𝑦 𝑖 βˆ’ 𝐴 π‘₯ 𝐡 𝑧 𝑗 𝐴 π‘₯ 𝐡 = 𝑖 𝑗 π‘˜ 𝐴 π‘₯ 𝐴 𝑦 𝐴 𝑧 𝐡 π‘₯ 𝐡 𝑦 𝐡 𝑧 𝐴 π‘₯ 𝐡 = 𝑖 𝑗 π‘˜ 𝐴 π‘₯ 𝐴 𝑦 𝐴 𝑧 𝐡 π‘₯ 𝐡 𝑦 𝐡 𝑧 𝑖 𝑗 𝐴 π‘₯ 𝐴 𝑦 𝐡 π‘₯ 𝐡 𝑦

10 Vector product Product of vectors: The vector product or Cross product
𝐴 π‘₯ 𝐡 = 𝐴 𝑦 𝐡 𝑧 𝑖 + 𝐴 𝑧 𝐡 π‘₯ 𝑗 + 𝐴 π‘₯ 𝐡 𝑦 π‘˜ βˆ’ 𝐴 𝑦 𝐡 π‘₯ π‘˜ βˆ’ 𝐴 𝑧 𝐡 𝑦 𝑖 βˆ’ 𝐴 π‘₯ 𝐡 𝑧 𝑗 𝐴 π‘₯ 𝐡 = 𝑖 𝑗 π‘˜ 𝐴 π‘₯ 𝐴 𝑦 𝐴 𝑧 𝐡 π‘₯ 𝐡 𝑦 𝐡 𝑧

11 Vector product Product of vectors: The vector product or Cross product
𝐴 π‘₯ 𝐡 = 𝐴 𝑦 𝐡 𝑧 𝑖 + 𝐴 𝑧 𝐡 π‘₯ 𝑗 + 𝐴 π‘₯ 𝐡 𝑦 π‘˜ βˆ’ 𝐴 𝑦 𝐡 π‘₯ π‘˜ βˆ’ 𝐴 𝑧 𝐡 𝑦 𝑖 βˆ’ 𝐴 π‘₯ 𝐡 𝑧 𝑗 𝐴 π‘₯ 𝐡 = 𝑖 𝑗 π‘˜ 𝐴 π‘₯ 𝐴 𝑦 𝐴 𝑧 𝐡 π‘₯ 𝐡 𝑦 𝐡 𝑧 𝐴 π‘₯ 𝐡 = 𝐴 𝑦 𝐡 𝑧 𝑖 βˆ’ 𝐴 𝑧 𝐡 𝑦 𝑖 + 𝐴 𝑧 𝐡 π‘₯ 𝑗 βˆ’ 𝐴 π‘₯ 𝐡 𝑧 𝑗 + 𝐴 π‘₯ 𝐡 𝑦 π‘˜ βˆ’ 𝐴 𝑦 𝐡 π‘₯ π‘˜ 𝐴 π‘₯ 𝐡 = 𝐴 𝑦 𝐡 𝑧 βˆ’ 𝐴 𝑧 𝐡 𝑦 𝑖 + 𝐴 𝑧 𝐡 π‘₯ βˆ’ 𝐴 π‘₯ 𝐡 𝑧 𝑗 + 𝐴 π‘₯ 𝐡 𝑦 βˆ’ 𝐴 𝑦 𝐡 π‘₯ π‘˜ 𝐴 π‘₯ 𝐡 = 𝑖 𝑗 π‘˜ 𝐴 π‘₯ 𝐴 𝑦 𝐴 𝑧 𝐡 π‘₯ 𝐡 𝑦 𝐡 𝑧

12 Vector product Product of vectors: The vector product or Cross product
Example: Given: Find: 𝐹 =3 𝑖 βˆ’5 𝑗 +2 π‘˜ a) 𝐹 Γ— 𝐺 b) 𝐺 Γ— 𝐹 𝐺 = 𝑗 βˆ’7 π‘˜ 𝐹 π‘₯ 𝐺 = 𝑖 𝑗 π‘˜ 3 βˆ’ βˆ’7 = 35βˆ’2 𝑖 𝑗 + 3βˆ’0 π‘˜ =33 𝑖 +21 𝑗 +3 π‘˜ 𝐺 π‘₯ 𝐹 = 𝑖 𝑗 π‘˜ 0 1 βˆ’7 3 βˆ’5 2 = 2βˆ’35 𝑖 + βˆ’21βˆ’0 𝑗 + 0βˆ’3 π‘˜ =βˆ’33 𝑖 βˆ’21 𝑗 βˆ’3 π‘˜ =βˆ’ 33 𝑖 +21 𝑗 +3 π‘˜ So: 𝐺 Γ— 𝐹 =βˆ’ 𝐹 Γ— 𝐺

13 Assignment 𝐡 𝐴 𝐢 1) Given: 2) Figure: 300𝑔𝑓 Find: Find: 100𝑔𝑓 160𝑔𝑓
𝐿 = 𝑖 +6 𝑗 βˆ’3 π‘˜ 𝐡 𝐴 𝑀 =6 𝑖 βˆ’ 𝑗 +7 π‘˜ 100𝑔𝑓 25 π‘œ 160𝑔𝑓 𝑁 =βˆ’7 π‘˜ 65 π‘œ 300𝑔𝑓 40 π‘œ Find: a) 𝐿 Γ— 𝑁 b) 𝐿 Γ— 𝑀 c) 𝐿 βˆ™ 𝑀 Γ— 𝑁 d) 𝐿 Γ— 𝑀 βˆ™ 𝑀 Γ— 𝑁 𝐢 Find: e) 𝐿 Γ— 𝑀 Γ— 𝑁 a) Convert the three vectors in terms of unit vectors. f) 5 𝑀 Γ— 𝑁 b) 𝐴 + 𝐡 + 𝐢 Note: Use the converted vectors in terms of unit vectors. g) 5 𝑁 Γ— 𝑀

14 eNd


Download ppt "Phys 13 General Physics 1 Vector Product MARLON FLORES SACEDON."

Similar presentations


Ads by Google