Download presentation
Presentation is loading. Please wait.
Published byΞΟΞ½ΞΈΞΉΞ± ΞΞ¬ΞΌΞ²Ξ±Ο Modified over 5 years ago
1
Phys 13 General Physics 1 Vector Product MARLON FLORES SACEDON
2
Vector product Product of vectors Scalar product or Dot product
Vector product or Cross product Ex. π΄ dot π΅ is equal to π΄ β π΅ Ex. π΄ cross π΅ is equal to π΄ Γ π΅
3
Vector product Product of vectors: The scalar product or Dot product
π΄ β π΅ to be the magnitude of π΄ multiplied by the component of π΅ in the direction of π΄ . π΅ β π΄ to be the magnitude of π΅ multiplied by the component of π΄ in the direction of π΅ . π΅πππ π π΄ π΅ π π π΄ π΅ π΄πππ π π΅ β π΄ =π΅π΄πππ π π΄ β π΅ =π΄π΅πππ π π΄ β π΅ = π΄ π΅ πππ π π΅ β π΄ = π΅ π΄ πππ π So, therefore: π΄ β π΅ = π΅ β π΄
4
π΄ β π΅ =π΄π΅πππ π Vector product
Product of vectors: The scalar product or Dot product So, the definition of Scalar or Dot product is, π΄ β π΅ =π΄π΅πππ π The scalar product of unit vectors π β π = π π πππ π =(1)(1) πππ 0 π =1 π β π =1 π β π =1 π β π =0 π β π =0 π β π =0 π β π =0 π β π =0 π β π =0
5
Vector product Product of vectors: The scalar product or Dot product
Suppose: Find: π΄ β π΅ π΄ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π π΅ = π΅ π₯ π + π΅ π¦ π + π΅ π§ π Then: π΄ β π΅ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π β π΅ π₯ π + π΅ π¦ π + π΅ π§ π 1 1 = π΄ π₯ π΅ π₯ π β π + π΄ π₯ π΅ π¦ π β π + π΄ π₯ π΅ π§ π β π + π΄ π¦ π΅ π₯ π β π + π΄ π¦ π΅ π¦ π β π + π΄ π¦ π΅ π§ π β π 1 + π΄ π§ π΅ π₯ π β π + π΄ π§ π΅ π¦ π β π + π΄ π§ π΅ π§ π β π π΄ β π΅ = π΄ π₯ π΅ π₯ + π΄ π¦ π΅ π¦ + π΄ π§ π΅ π§ Therefore: So: ABcosΞΈ= π΄ π₯ π΅ π₯ + π΄ π¦ π΅ π¦ + π΄ π§ π΅ π§ π= πππ β1 π΄ π₯ π΅ π₯ + π΄ π¦ π΅ π¦ + π΄ π§ π΅ π§ π΄π΅ Angle between vectors
6
Vector product Product of vectors: The scalar product or Dot product π»
π§ π₯ π¦ Example: Find: Given: πΊ =9 π β3 π + π a) πΊ β π» π» π» = π β6 π b) Angle between vectors πΊ and π» β6 π π Solution: π 9 π πΊ β3 π a) πΊ β π» = πΊ π₯ π» π₯ + πΊ π¦ π» π¦ + πΊ π§ π» π§ π = 9 1 + β3 0 +(1)(β6) =3 ANSWER πππ β1 πΊ π₯ π» π₯ + πΊ π¦ π» π¦ + πΊ π§ π» π§ πΊπ» b) π= =πππ β β β6 2 =πππ β1 [ ] π= π ANSWER
7
π΄ π₯ π΅ = π΄ π΅ π πππ π Vector product
Product of vectors: The vector product or Cross product π π π΅ π΄ π π΅ π΄ π π΅ π πππ π΅ π₯ π΄ What is π΄ cross π΅ is equal to π΄ Γ π΅ ? ANSWER: π΄ Γ π΅ to be the magnitude of π΄ multiplied by the component of π΅ perpendicular to π΄ , then multiplied by a unit vector π which is normal to swipe area of the two vectors. π΅ π₯ π΄ =β π΄ π₯ π΅ The property of vector product. π΄ π₯ π΅ = π΄ π΅ π πππ π
8
Product of vectors: The vector product or Cross product
The vector product of unit vectors π π₯ π =1 1 π ππ0 π =0 π π₯ π =1 1 π ππ90 π = π π π₯ π =1 1 π ππ90 π =β π π π₯ π =0 π π₯ π =0 π π₯ π =0 π π₯ π = π π π₯ π =β π π π₯ π =β π π π₯ π =β π π π₯ π = π π π₯ π = π
9
Vector product Product of vectors: The vector product or Cross product
Suppose: Find: π΄ π₯ π΅ π΄ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π π΅ = π΅ π₯ π + π΅ π¦ π + π΅ π§ π Evaluate: π΄ π₯ π΅ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π π₯ π΅ π₯ π + π΅ π¦ π + π΅ π§ π π β π = π΄ π₯ π΅ π₯ π π₯ π + π΄ π₯ π΅ π¦ π π₯ π + π΄ π₯ π΅ π§ π π₯ π β π π + π΄ π¦ π΅ π₯ π π₯ π + π΄ π¦ π΅ π¦ π π₯ π + π΄ π¦ π΅ π§ π π₯ π + π΄ π§ π΅ π₯ π π₯ π π + π΄ π§ π΅ π¦ π π₯ π β π + π΄ π§ π΅ π§ π π₯ π = π΄ π₯ π΅ π¦ π + π΄ π₯ π΅ π§ β π + π΄ π¦ π΅ π₯ β π + π΄ π¦ π΅ π§ π + π΄ π§ π΅ π₯ π + π΄ π§ π΅ π¦ β π π΄ π₯ π΅ = π΄ π¦ π΅ π§ π + π΄ π§ π΅ π₯ π + π΄ π₯ π΅ π¦ π β π΄ π¦ π΅ π₯ π β π΄ π§ π΅ π¦ π β π΄ π₯ π΅ π§ π π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§ π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§ π π π΄ π₯ π΄ π¦ π΅ π₯ π΅ π¦
10
Vector product Product of vectors: The vector product or Cross product
π΄ π₯ π΅ = π΄ π¦ π΅ π§ π + π΄ π§ π΅ π₯ π + π΄ π₯ π΅ π¦ π β π΄ π¦ π΅ π₯ π β π΄ π§ π΅ π¦ π β π΄ π₯ π΅ π§ π π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§
11
Vector product Product of vectors: The vector product or Cross product
π΄ π₯ π΅ = π΄ π¦ π΅ π§ π + π΄ π§ π΅ π₯ π + π΄ π₯ π΅ π¦ π β π΄ π¦ π΅ π₯ π β π΄ π§ π΅ π¦ π β π΄ π₯ π΅ π§ π π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§ π΄ π₯ π΅ = π΄ π¦ π΅ π§ π β π΄ π§ π΅ π¦ π + π΄ π§ π΅ π₯ π β π΄ π₯ π΅ π§ π + π΄ π₯ π΅ π¦ π β π΄ π¦ π΅ π₯ π π΄ π₯ π΅ = π΄ π¦ π΅ π§ β π΄ π§ π΅ π¦ π + π΄ π§ π΅ π₯ β π΄ π₯ π΅ π§ π + π΄ π₯ π΅ π¦ β π΄ π¦ π΅ π₯ π π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§
12
Vector product Product of vectors: The vector product or Cross product
Example: Given: Find: πΉ =3 π β5 π +2 π a) πΉ Γ πΊ b) πΊ Γ πΉ πΊ = π β7 π πΉ π₯ πΊ = π π π 3 β β7 = 35β2 π π + 3β0 π =33 π +21 π +3 π πΊ π₯ πΉ = π π π 0 1 β7 3 β5 2 = 2β35 π + β21β0 π + 0β3 π =β33 π β21 π β3 π =β 33 π +21 π +3 π So: πΊ Γ πΉ =β πΉ Γ πΊ
13
Assignment π΅ π΄ πΆ 1) Given: 2) Figure: 300ππ Find: Find: 100ππ 160ππ
πΏ = π +6 π β3 π π΅ π΄ π =6 π β π +7 π 100ππ 25 π 160ππ π =β7 π 65 π 300ππ 40 π Find: a) πΏ Γ π b) πΏ Γ π c) πΏ β π Γ π d) πΏ Γ π β π Γ π πΆ Find: e) πΏ Γ π Γ π a) Convert the three vectors in terms of unit vectors. f) 5 π Γ π b) π΄ + π΅ + πΆ Note: Use the converted vectors in terms of unit vectors. g) 5 π Γ π
14
eNd
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.