Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fixed- Point Iteration

Similar presentations


Presentation on theme: "Fixed- Point Iteration"โ€” Presentation transcript:

1 Fixed- Point Iteration
Sec:2.2 Fixed- Point Iteration

2 Sec:2.2 Fixed- Point Iteration
The number ๐‘ is a fixed point for a given function ๐‘” if. ๐‘=๐‘” ๐‘ Example: A fixed point for g occurs precisely when the graph of ๐‘ฆ = ๐‘”(๐‘ฅ) intersects the graph of ๐‘ฆ = ๐‘ฅ Determine any fixed points of the function ๐‘”(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 2. solution ๐‘=๐‘”(๐‘) ๐‘= ๐‘ 2 โˆ’ 2 0= ๐‘ 2 โˆ’๐‘โˆ’ 2 ๐‘=โˆ’1, ๐‘=2

3 |gโ€™(x)| โ‰ค k, for all x โˆˆ (a, b),
Sec:2.2 Fixed- Point Iteration Theorem 2.3 (i) If g โˆˆ C[a, b] and g(x) โˆˆ [a, b] for all x โˆˆ [a, b], then g has at least one fixed point in [a, b]. (ii) If, in addition, g(x) exists on (a, b) and a positive constant k < 1 exists with |gโ€™(x)| โ‰ค k, for all x โˆˆ (a, b), then there is exactly one fixed point in [a, b]. Example Show that g(x) = ๐‘ฅ 2 โˆ’1 3 has a unique fixed point on the interval [โˆ’1, 1]. Example Show that g(x) = 3 โˆ’๐‘ฅ has at least one fixed point on the interval [0, 1].

4 Sec:2.2 Fixed- Point Iteration
The number ๐‘ is a fixed point for a given function ๐‘” if.๐‘=๐‘” ๐‘ Example ๐’‘ ๐’ ๐’ Find the fixed point of the function ๐’ˆ(๐’™)= ๐’† โˆ’๐’™ ย  ๐’‘ ๐’Š+๐Ÿ =๐’ˆ( ๐’‘ ๐’Š ) ๐’‘ ๐’Š+๐Ÿ = ๐’† โˆ’ ๐’‘ ๐’Š ย  Starting with an initial guess of p0 = 0 ๐’‘ ๐Ÿ =๐’ˆ ๐’‘ ๐ŸŽ = ๐’† โˆ’๐ŸŽ =๐Ÿ ๐’‘ ๐Ÿ =๐’ˆ ๐’‘ ๐Ÿ = ๐’† โˆ’๐Ÿ = ๐’‘ ๐Ÿ‘ =๐’ˆ ๐’‘ ๐Ÿ = ๐’† โˆ’๐ŸŽ.๐Ÿ‘๐Ÿ”๐Ÿ•๐Ÿ–๐Ÿ•๐Ÿ— = Thus, each iteration brings the estimate closer to the true fixed point: โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

5 Sec:2.2 Fixed- Point Iteration
The number ๐‘ is a fixed point for a given function ๐‘” if. ๐‘=๐‘” ๐‘ Finding fixed point of ๐’ˆ(๐’™) Root Finding of ๐’‡(๐’™) ๐’‘ Is a fixed point of ๐’ˆ(๐’™) ๐’‘ Is a root of ๐’‡(๐’™) ๐’‡ (๐’™) = ๐’™ โˆ’ ๐’ˆ(๐’™)

6 Sec:2.2 Fixed- Point Iteration
Example1 ๐‘ฅ 2 โˆ’ 2๐‘ฅ + 3 = 0 can be simply manipulated to yield simple fixed-point iteration Step 1 ย ๐‘ฅ= ๐‘ฅ ๐‘ฅ=๐‘”(๐‘ฅ) rearranging the function ๐’‡ (๐’™) = ๐ŸŽ so that x is on the left-hand side of the equation: ๐’™ = ๐’ˆ(๐’™) (*) Example2 sinโก(๐‘ฅ)= 0 can be simply manipulated to yield ๐‘ฅ=๐‘ฅ+sinโก(๐‘ฅ) ๐‘ฅ=๐‘”(๐‘ฅ) Step 2 given an initial guess at the root ๐‘ ๐‘– , (*) can be used to compute a new estimate ๐‘ ๐‘–+1 as expressed by the iterative formula ๐’‘ ๐’Š+๐Ÿ =๐’ˆ( ๐’‘ ๐’Š ) Note Convert the problem from root-finding to finding fixed-point

7 Sec:6.1 Fixed- Point Iteration
Step 1 Example1 Use simple fixed-point iteration to locate the root of ๐’‡ ๐’™ = ๐’† โˆ’๐’™ โˆ’๐’™ rearranging the function ๐’™= ๐’† โˆ’๐’™ ย  ๐’™=๐’ˆ(๐’™)ย  ๐’‘ ๐’ Step 2 ๐’ ๐’‘ ๐’Š+๐Ÿ =๐’ˆ( ๐’‘ ๐’Š ) ๐’‘ ๐’Š+๐Ÿ = ๐’† โˆ’ ๐’‘ ๐’Š ย  Starting with an initial guess of p0 = 0 ๐’™ ๐Ÿ =๐’ˆ ๐’‘ ๐ŸŽ = ๐’† โˆ’๐ŸŽ =๐Ÿ ๐’‘ ๐Ÿ =๐’ˆ ๐’‘ ๐Ÿ = ๐’† โˆ’๐Ÿ = ๐’‘ ๐Ÿ‘ =๐’ˆ ๐’‘ ๐Ÿ = ๐’† โˆ’๐ŸŽ.๐Ÿ‘๐Ÿ”๐Ÿ•๐Ÿ–๐Ÿ•๐Ÿ— = โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ Thus, each iteration brings the estimate closer to the true value of the root:

8 Sec:2.2 Fixed- Point Iteration
๐œบ ๐’• = ๐’‘ ๐’ โˆ’๐’‘ ๐’‘ ร—๐Ÿ๐ŸŽ๐ŸŽ% clear; clc; format long p(1) = 0; g exp(-x); true_root = ; for k=1:11 p(k+1) = g( p(k) ); rel=abs( (p(k) - true_root )/ true_root ); fprintf('%d %10.4f %10.4f\n', k,p(k),rel); end ๐’‘ ๐’ ๐œบ ๐’• (%) ๐’ Notice that the true percent relative error for each iteration is roughly proportional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. This property, called linear convergence

9 Sec:2.2 Fixed- Point Iteration
The derivative mean-value theorem states that if a function ๐‘”(๐‘ฅ) and its first derivative are continuous over an interval ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘, then there exists at least one value of ๐‘ฅ= ๐œ‰ within the interval such that ๐‘”โ€ฒ(๐œ‰ ) = ๐‘”(๐‘) โˆ’ ๐‘”(๐‘Ž) ๐‘ โˆ’ ๐‘Ž The right-hand side of this equation is the slope of the line joining ๐‘”(๐‘Ž) and ๐‘”(๐‘). ๐‘” ๐‘ โˆ’ ๐‘” ๐‘Ž = ๐‘” โ€ฒ ๐œ‰ (๐‘โˆ’๐‘Ž) Slope of the tangent line is ๐‘”โ€ฒ(๐œ‰ ) Slope of this line is ๐‘”(๐‘) โˆ’ ๐‘”(๐‘Ž) ๐‘ โˆ’ ๐‘Ž ๐œ‰

10 ๐‘ฌ ๐Ÿ๐ŸŽ <๐’Œ ๐‘ฌ ๐Ÿ— <โ‹ฏ< ๐’Œ ๐Ÿ— ๐‘ฌ ๐Ÿ < ๐’Œ ๐Ÿ๐ŸŽ ๐‘ฌ ๐ŸŽ
Convergence Sec:2.2 Fixed- Point Iteration Suppose that the true solution is ๐‘ฌ ๐’+๐Ÿ = ๐’ˆโ€ฒ ๐ƒ โˆ™ ๐‘ฌ ๐’ ๐’‘=๐’ˆ(๐’‘)ย  <๐’Œ ๐‘ฌ ๐’ the iterative equation is ( If ๐’ˆ ๐ƒ โ‰ค๐’Œ, ๐’Œ<๐Ÿ ) ๐’‘ ๐’+๐Ÿ =๐’ˆ( ๐’‘ ๐’ )ย  the errors decrease with each iteration Subtracting these equations yields ๐‘ฌ ๐’+๐Ÿ <๐’Œ ๐‘ฌ ๐’ ๐’‘โˆ’ ๐’‘ ๐’+๐Ÿ =๐’ˆ ๐’‘ โˆ’๐’ˆ( ๐’‘ ๐’ )ย  ๐‘ฌ ๐Ÿ๐ŸŽ <๐’Œ ๐‘ฌ ๐Ÿ— <โ‹ฏ< ๐’Œ ๐Ÿ— ๐‘ฌ ๐Ÿ < ๐’Œ ๐Ÿ๐ŸŽ ๐‘ฌ ๐ŸŽ The derivative mean-value theorem gives ๐‘ฌ ๐’ < ๐’Œ ๐’ ๐‘ฌ ๐ŸŽ ๐’‘โˆ’ ๐’‘ ๐’+๐Ÿ =๐’ˆโ€ฒ ๐ƒ (ย ๐’‘โˆ’ ๐’‘ ๐’ ) Step 1 where ๐œ‰ is somewhere between ๐‘ and ๐‘ ๐‘› rearranging the function ๐’‡ (๐’™) = ๐ŸŽ ย so that x is on the left-hand side of the equation: ๐’™ = ๐’ˆ(๐’™) If the true error for iteration n is defined as ๐‘ฌ ๐’ =๐’‘โˆ’ ๐’‘ ๐’ ๐‘ฌ ๐’+๐Ÿ =๐’ˆโ€ฒ ๐ƒ ๐‘ฌ ๐’ Select ๐’ˆ ๐’™ ๐’”๐’ ๐’•๐’‰๐’‚๐’• ๐’ˆโ€ฒ ๐ƒ <๐Ÿ ๐‘ฌ ๐’+๐Ÿ = ๐’ˆโ€ฒ ๐ƒ โˆ™ ๐‘ฌ ๐’

11 Sec:2.2 Fixed- Point Iteration
Theorem 2.4 (Fixed-Point Theorem) Let g โˆˆ C[a, b] be such that g(x) โˆˆ [a, b], for all x in [a, b]. Suppose, in addition, that gโ€™ exists on (a, b) and that a constant 0 < k < 1 exists with |g(x)| โ‰ค k, for all x โˆˆ (a, b). Then for any number p0 in [a, b], the sequence defined by pn = g( pnโˆ’1), n โ‰ฅ 1, converges to the unique fixed point p in [a, b]. Corollary 2.5 If g satisfies the hypotheses of Theorem 2.4, then bounds for the error involved in using pn to approximate p are given by | pn โˆ’ p| โ‰ค ๐’Œ ๐’ max{ p0 โˆ’ a, b โˆ’ p0} (2.5) and | pn โˆ’ p| โ‰ค ๐’Œ ๐’ ๐Ÿโˆ’๐’Œ | p1 โˆ’ p0|, for all n โ‰ฅ 1. (2.6) Two important error equation

12 Sec:2.2 Fixed- Point Iteration
Corollary 2.5 If g satisfies the hypotheses of Theorem 2.4, then bounds for the error involved in using pn to approximate p are given by | pn โˆ’ p| โ‰ค ๐’Œ ๐’ max{ p0 โˆ’ a, b โˆ’ p0} (2.5) and | pn โˆ’ p| โ‰ค ๐’Œ ๐’ ๐Ÿโˆ’๐’Œ | p1 โˆ’ p0|, for all n โ‰ฅ 1. (2.6) Remark 1 The smaller the value of k, the faster the convergence, which may be very slow if k is close to 1, Remark 2 the rate at which { pn } converges

13 Sec:2.2 Fixed- Point Iteration
The function g(x) is decreasing ๐‘” 0.2 =0.8187 0.407, โŠ‚[0.2, 0.9] ๐‘” 0.9 =0.407 g(x) โˆˆ [a, b], for all x in [a, b]

14 Sec:2.2 Fixed- Point Iteration
| pn โˆ’ p| โ‰ค ๐’Œ ๐’ ๐Ÿโˆ’๐’Œ | p1 โˆ’ p0|, for all n โ‰ฅ 1. (2.6) | pn โˆ’ p| โ‰ค ๐’Œ ๐’ max{ p0 โˆ’ a, b โˆ’ p0} (2.5) | pn โˆ’ p| โ‰ค ( ๐’† โˆ’๐ŸŽ.๐Ÿ ) ๐’ max{ 0.8 โˆ’ 0.2, 0.9 โˆ’ 0.8} | pn โˆ’ p| โ‰ค ( ๐‘’ โˆ’0.2 ) ๐‘› 1โˆ’ ๐‘’ โˆ’ โˆ’0.8 | pn โˆ’ p| โ‰ค ( ๐’† โˆ’๐ŸŽ.๐Ÿ ) ๐’ { 0.6 } | pn โˆ’ p| โ‰ค ( ๐‘’ โˆ’0.2 ) ๐‘› 1โˆ’ ๐‘’ โˆ’0.2 { } โ‰ค 10 โˆ’2 | pn โˆ’ p| โ‰ค ( ๐’† โˆ’๐ŸŽ.๐Ÿ ) ๐’ { ๐ŸŽ.๐Ÿ” } โ‰ค ๐Ÿ๐ŸŽ โˆ’๐Ÿ ๐‘’ โˆ’0.2 ๐‘› โ‰ค 10 โˆ’2 (1โˆ’ ๐‘’ โˆ’0.2 ) ๐’† โˆ’๐ŸŽ.๐Ÿ ๐’ โ‰ค ๐Ÿ๐ŸŽ โˆ’๐Ÿ ๐ŸŽ.๐Ÿ” โˆ’0.2 ๐‘›โ‰ค๐‘™๐‘›( 10 โˆ’2 (1โˆ’ ๐‘’ โˆ’0.2 ) ) โ†’ ๐‘›โ‰ฅ โˆ’๐ŸŽ.๐Ÿ ๐’โ‰ค๐’๐’( ๐Ÿ๐ŸŽ โˆ’๐Ÿ ๐ŸŽ.๐Ÿ” ) โ†’ ๐’โ‰ฅ๐Ÿ๐ŸŽ.๐Ÿ’๐Ÿ•๐Ÿ๐Ÿ• โ†’ ๐‘›=27 โ†’ ๐’=๐Ÿ๐Ÿ

15 Sec:2.2 Fixed- Point Iteration


Download ppt "Fixed- Point Iteration"

Similar presentations


Ads by Google