Presentation is loading. Please wait.

Presentation is loading. Please wait.

1-5 : Angle Pair Relationships

Similar presentations


Presentation on theme: "1-5 : Angle Pair Relationships"β€” Presentation transcript:

1 1-5 : Angle Pair Relationships
Geometry Chapter 1 1-5 : Angle Pair Relationships

2 Warm-Up – Review Problems 5-8 From Quiz #1
Find the distance between the points. 5.) βˆ’6, 0 , (βˆ’6, 7) 𝑑= ( π‘₯ 2 βˆ’ π‘₯ 1 ) 2 + ( 𝑦 2 βˆ’ 𝑦 1 ) 2 𝑑= (βˆ’6βˆ’(βˆ’6)) 2 + (7βˆ’0) 2 𝑑= 𝒅= πŸ’πŸ— =πŸ• 6.) 4, 5 , (βˆ’5, βˆ’8) 𝑑= ( π‘₯ 2 βˆ’ π‘₯ 1 ) 2 + ( 𝑦 2 βˆ’ 𝑦 1 ) 2 𝑑= (4βˆ’(βˆ’5)) 2 + (βˆ’8βˆ’5) 2 𝑑= (βˆ’13) 2 𝑑= 𝒅= πŸπŸ“πŸŽ β‰ˆπŸπŸ“.πŸ–πŸ

3 Warm-Up – Review Problems 5-8 From Quiz #1
Find the midpoint of the line segment with the given endpoints. 7.) βˆ’8, 5 , (3, 2) 𝑀= π‘₯ 1 + π‘₯ 2 2 , 𝑦 1 + 𝑦 2 2 𝑀= βˆ’8+3 2 , 𝑴= βˆ’πŸ“ 𝟐 , πŸ• 𝟐 8.) βˆ’3, βˆ’5 , (3, βˆ’5) 𝑀= π‘₯ 1 + π‘₯ 2 2 , 𝑦 1 + 𝑦 2 2 𝑀= βˆ’3+3 2 , βˆ’5+(βˆ’5) 2 𝑀= 0 2 , βˆ’10 2 𝑴= 𝟎, βˆ’πŸ“

4 Describe Angle Pair Relationships
Objective: Students will be able to use special angle relationships to find angle measures. Agenda Angle Types (w/Examples) Angle Pairs (w/Examples)

5 Complementary and Supplementary Angles
Complementary Angles: Two Angles whose measures add up to 90Β° 1 <𝟏 and <𝟐 are Complementary 2 π’Ž<𝟏+π’Ž<𝟐=πŸ—πŸŽΒ°

6 Complementary and Supplementary Angles
Two Angles whose measures add up to 180Β° <πŸ‘ and <πŸ’ are Supplementary 3 4 π’Ž<πŸ‘+π’Ž<πŸ’=πŸπŸ–πŸŽΒ°

7 Example 1 (Pg. 36) Solution: π‘š<1+π‘š<2=90Β° 68 + π‘š<2=90
a.) Given that <1 is a complement of <2 and π‘š<1=68Β°, find π‘š<2. b.) Given that <3 is a supplement of <4 and π‘š<4=56Β°, find π‘š<3. Solution: π‘š<1+π‘š<2=90Β° 68 + π‘š<2=90 π‘š<2=22Β° Solution: π‘š<3+π‘š<4=180Β° π‘š<3+56=180 π‘š<3=124Β°

8 Adjacent Angles Adjacent Angles:
Two Angles that share a common vertex and side, but have no common interior points. Examples 5 6 7 8 <5 and <6 are complementary <7 and <8 are Supplementary

9 Example 2 (Pg. 35) 32Β° 122Β° A C B D 58Β° R S T
In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles 32Β° 122Β° A C B D 58Β° R S T Complementary Angles: <𝐡𝐴𝐢 and <𝑅𝑆𝑇 Supplementary Angles: <𝐷𝐴𝐢 and <𝑅𝑆𝑇 Adjacent Angles: <𝐡𝐴𝐢 and <𝐷𝐴𝐢

10 π‘š<𝐡𝐢𝐸+π‘š<𝐸𝐢𝐷=180Β° (why?)
Example 3 (Pg. 36) Find π‘š<𝐡𝐢𝐸 and π‘š<𝐸𝐢𝐷. Solution: π‘š<𝐡𝐢𝐸+π‘š<𝐸𝐢𝐷=180Β° (why?) 4π‘₯+8 + π‘₯+2 =180 5π‘₯+10=180 5π‘₯=170 𝒙=πŸ‘πŸ’ (4π‘₯+8)Β° (π‘₯+2)Β° C E B D

11 Example 3 (Pg 36) Next, plug in π‘₯=34 for π’Ž<𝑩π‘ͺ𝑬 and π’Ž<𝑬π‘ͺ𝑫.
π’Ž<𝑩π‘ͺ𝑬=πŸ’π’™+πŸ– =πŸ’ πŸ‘πŸ’ +πŸ– =πŸπŸ’πŸ’ For π’Ž<𝑬π‘ͺ𝑫: π’Ž<𝑬π‘ͺ𝑫=𝒙+𝟐 =πŸ‘πŸ’+𝟐 =πŸ‘πŸ” Thus, π’Ž<𝑩π‘ͺ𝑬=πŸπŸ’πŸ’Β° and π’Ž<𝑬π‘ͺ𝑫=πŸ‘πŸ”Β°

12 Angle Pairs Linear Pair:
Two adjacent angles whose noncommon sides form opposite sides. These angles are always supplementary. 1 2 <𝟏 and <𝟐 are a linear pair. π’Ž<𝟏+π’Ž<𝟐=πŸπŸ–πŸŽΒ°

13 Angle Pairs Vertical Angles:
Two Angles whose sides form two pairs of opposite rays. Angles that are directly across from one another on intersecting lines. <πŸ‘ and <πŸ” are vertical angles. 5 6 4 3 <πŸ’ and <πŸ“ are vertical angles.

14 Example 4 (Pg. 37) Vertical Angles: <𝟏 and <πŸ“ 2 3 1 Linear Pair:
Identify all the linear pairs and all of the vertical angles in the figure. Vertical Angles: <𝟏 and <πŸ“ 5 2 4 3 1 Linear Pair: <𝟏 and <πŸ’ Also <πŸ’ and <πŸ“

15 Example 5 (Pg. 37) π‘š<1=π‘₯Β° π‘š<2=π‘š<1Γ—5 π‘š<2=5π‘₯Β° 5π‘₯Β° π‘₯Β°
Two angles form a linear pair. The measure of one angle is 5 time the measure of the other. Find the measure of each. Solution: First establish variables from information given in the problem π‘š<1=π‘₯Β° π‘š<2=π‘š<1Γ—5 π‘š<2=5π‘₯Β° Picture (If needed): 5π‘₯Β° π‘₯Β°

16 Example 5 (Pg. 37) Thus, π’Ž<𝟏=πŸ‘πŸŽΒ° and π’Ž<𝟐=πŸπŸ“πŸŽΒ°
Solution: Now make an equation (using knowledge of linear pairs) and solve Now plug in π‘₯=30 to find π‘š<1 and π‘š<2 π‘š<1+π‘š<2=180Β° π‘₯+5π‘₯=180 6π‘₯=180 π‘₯=30 π’Ž<𝟏=𝒙=πŸ‘πŸŽ π’Ž<𝟐=πŸ“π’™=πŸ“ πŸ‘πŸŽ =πŸπŸ“πŸŽ Thus, π’Ž<𝟏=πŸ‘πŸŽΒ° and π’Ž<𝟐=πŸπŸ“πŸŽΒ°

17 Homework 1-5 Pg #’s


Download ppt "1-5 : Angle Pair Relationships"

Similar presentations


Ads by Google