Download presentation
Presentation is loading. Please wait.
1
Sum and Difference Identities
Using the sum and difference identities for sine, cosine, and tangent functions
2
Sum and Difference Identities for the Cosine Function
If Ξ± and Ξ² represent the measures of two angles, then the following identities hold for all values of Ξ± and Ξ². cos πΌ+π½ =πππ πΌ πππ π½βπ πππΌ π πππ½ πππ πΌβπ½ =πππ πΌ πππ π½+π πππΌ π πππ½
3
Find cos 15β° from values of functions of 30β° and 45β°.
=πππ 45Β° πππ 30Β°+π ππ45Β° π ππ30Β° = β β 1 2 = πππ 15Β°β0.9659
4
Find cos 75Β° from values of functions of 30Β° πππ 45Β°.
πππ 30 cos 45 βπ ππ30 sin 45 3 2 β β 1 2 β 6 4 β .2588
5
Terri Cox is an electrical engineer designing a three-phase AC-generator. Three-phase generators produce three currents fo electricity at one time. They can generate more power for the amount of materials used and lead to better transmission and use of power then single-phase generators can. The three phases of the generator Ms. Cox is making are expressed as πΌπππ π, πΌπππ π+120Β° , πππ πΌπππ (π+240Β°). She must show that each phase is equal to the sum of the other two phases but opposite in sign. To do this, she will show that πΌπππ π+πΌπππ π+120Β° +πΌπππ π+240Β° =0. πΌπππ π+πΌπππ π+120 +πΌπππ (π+240=0 πΌπππ π+πΌ πππ π πππ 120βπ πππ π ππ120 +πΌ πππ π πππ 240βπ πππ π ππ240 =0 πΌπππ π+πΌ β 1 2 πππ πβ π πππ + β1 2 πππ πβ β π πππ =0 πΌπππ πβ 1 2 πΌπππ πβ πΌπ πππβ 1 2 πΌπππ π πΌπ πππ=0 0=0
6
Sum and Difference Identities for Sine Function
If Ξ± and Ξ² represent the measures of two angles, then the following identities hold for all values of Ξ± and Ξ². sin πΌ+π½ =π πππΌ πππ π½+π πππ½ πππ πΌ sin(Ξ±βπ½)=π πππΌ πππ π½βπ πππ½ πππ πΌ
7
Find sin 75β° from values of functions of 30β° and 45β°.
= 1 2 β β = π ππ75Β°β.9659
8
Find sin 15β° from values of functions of 30β° and 45β°.
= β β β 1 2 = β sin 15Β°β0.2588
9
Sum and Difference Identities for the Tangent Function
If Ξ± and Ξ² represent the measures of two angles, then the following identities hold for all values of Ξ± and Ξ². tan πΌ+π½ = π‘πππΌ+π‘πππ½ 1βπ‘πππΌ π‘πππ½ tan πΌβπ½ = π‘πππΌβπ‘πππ½ 1+π‘πππΌ π‘πππ½
10
Find tan 15β° from values of functions of 45β° and 30β° π‘ππ15Β°= tan 45β30
= π‘ππ45βπ‘ππ30 1+ tan 45 tan 30 = 1β = 3β = 3β 3β 3 3β 3 = 9β β3 = 12β =2β 3 β0.2679
11
Find tan 105β° from values of functions of 45β° and 60β°
tan 105= tan 45+ tan β tan 45 tan 60 = β(1)( 3 ) = β 3 = β3 = β2 =β2β 3 ββ3.7321
12
Verify that cot π₯= tan π 2 βπ₯
cot π₯= sin π 2 βπ₯ cos π 2 βπ₯ cot π₯= sin π 2 πππ π₯ β cos π 2 sin π₯ cos π 2 cos π₯+ sin π 2 sin π₯ cot π₯= 1 cos π₯β 0 sin π₯ cos π₯+ 1 sin π₯ cot π₯= cos π₯ sin π₯ cot π₯= cot π₯
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.