Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sum and Difference Identities

Similar presentations


Presentation on theme: "Sum and Difference Identities"β€” Presentation transcript:

1 Sum and Difference Identities
Using the sum and difference identities for sine, cosine, and tangent functions

2 Sum and Difference Identities for the Cosine Function
If Ξ± and Ξ² represent the measures of two angles, then the following identities hold for all values of Ξ± and Ξ². cos 𝛼+𝛽 =π‘π‘œπ‘ π›Ό π‘π‘œπ‘ π›½βˆ’π‘ π‘–π‘›π›Ό 𝑠𝑖𝑛𝛽 π‘π‘œπ‘  π›Όβˆ’π›½ =π‘π‘œπ‘ π›Ό π‘π‘œπ‘ π›½+𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛽

3 Find cos 15⁰ from values of functions of 30⁰ and 45⁰.
=π‘π‘œπ‘ 45Β° π‘π‘œπ‘ 30Β°+𝑠𝑖𝑛45Β° 𝑠𝑖𝑛30Β° = βˆ— βˆ— 1 2 = π‘π‘œπ‘ 15Β°β‰ˆ0.9659

4 Find cos 75Β° from values of functions of 30Β° π‘Žπ‘›π‘‘ 45Β°.
π‘π‘œπ‘ 30 cos 45 βˆ’π‘ π‘–π‘›30 sin 45 3 2 βˆ— βˆ’ 1 2 βˆ— 6 4 βˆ’ .2588

5 Terri Cox is an electrical engineer designing a three-phase AC-generator. Three-phase generators produce three currents fo electricity at one time. They can generate more power for the amount of materials used and lead to better transmission and use of power then single-phase generators can. The three phases of the generator Ms. Cox is making are expressed as πΌπ‘π‘œπ‘ πœƒ, πΌπ‘π‘œπ‘  πœƒ+120Β° , π‘Žπ‘›π‘‘ πΌπ‘π‘œπ‘ (πœƒ+240Β°). She must show that each phase is equal to the sum of the other two phases but opposite in sign. To do this, she will show that πΌπ‘π‘œπ‘ πœƒ+πΌπ‘π‘œπ‘  πœƒ+120Β° +πΌπ‘π‘œπ‘  πœƒ+240Β° =0. πΌπ‘π‘œπ‘ πœƒ+πΌπ‘π‘œπ‘  πœƒ+120 +πΌπ‘π‘œπ‘ (πœƒ+240=0 πΌπ‘π‘œπ‘ πœƒ+𝐼 π‘π‘œπ‘ πœƒ π‘π‘œπ‘ 120βˆ’π‘ π‘–π‘›πœƒ 𝑠𝑖𝑛120 +𝐼 π‘π‘œπ‘ πœƒ π‘π‘œπ‘ 240βˆ’π‘ π‘–π‘›πœƒ 𝑠𝑖𝑛240 =0 πΌπ‘π‘œπ‘ πœƒ+𝐼 βˆ’ 1 2 π‘π‘œπ‘ πœƒβˆ’ π‘ π‘–π‘›πœƒ + βˆ’1 2 π‘π‘œπ‘ πœƒβˆ’ βˆ’ π‘ π‘–π‘›πœƒ =0 πΌπ‘π‘œπ‘ πœƒβˆ’ 1 2 πΌπ‘π‘œπ‘ πœƒβˆ’ πΌπ‘ π‘–π‘›πœƒβˆ’ 1 2 πΌπ‘π‘œπ‘ πœƒ πΌπ‘ π‘–π‘›πœƒ=0 0=0

6 Sum and Difference Identities for Sine Function
If Ξ± and Ξ² represent the measures of two angles, then the following identities hold for all values of Ξ± and Ξ². sin 𝛼+𝛽 =𝑠𝑖𝑛𝛼 π‘π‘œπ‘ π›½+𝑠𝑖𝑛𝛽 π‘π‘œπ‘ π›Ό sin(Ξ±βˆ’π›½)=𝑠𝑖𝑛𝛼 π‘π‘œπ‘ π›½βˆ’π‘ π‘–π‘›π›½ π‘π‘œπ‘ π›Ό

7 Find sin 75⁰ from values of functions of 30⁰ and 45⁰.
= 1 2 βˆ— βˆ— = 𝑠𝑖𝑛75Β°β‰ˆ.9659

8 Find sin 15⁰ from values of functions of 30⁰ and 45⁰.
= βˆ— βˆ’ βˆ— 1 2 = βˆ’ sin 15Β°β‰ˆ0.2588

9 Sum and Difference Identities for the Tangent Function
If Ξ± and Ξ² represent the measures of two angles, then the following identities hold for all values of Ξ± and Ξ². tan 𝛼+𝛽 = π‘‘π‘Žπ‘›π›Ό+π‘‘π‘Žπ‘›π›½ 1βˆ’π‘‘π‘Žπ‘›π›Ό π‘‘π‘Žπ‘›π›½ tan π›Όβˆ’π›½ = π‘‘π‘Žπ‘›π›Όβˆ’π‘‘π‘Žπ‘›π›½ 1+π‘‘π‘Žπ‘›π›Ό π‘‘π‘Žπ‘›π›½

10 Find tan 15⁰ from values of functions of 45⁰ and 30⁰ π‘‘π‘Žπ‘›15Β°= tan 45βˆ’30
= π‘‘π‘Žπ‘›45βˆ’π‘‘π‘Žπ‘›30 1+ tan 45 tan 30 = 1βˆ’ = 3βˆ’ = 3βˆ’ 3βˆ’ 3 3βˆ’ 3 = 9βˆ’ βˆ’3 = 12βˆ’ =2βˆ’ 3 β‰ˆ0.2679

11 Find tan 105⁰ from values of functions of 45⁰ and 60⁰
tan 105= tan 45+ tan βˆ’ tan 45 tan 60 = βˆ’(1)( 3 ) = βˆ’ 3 = βˆ’3 = βˆ’2 =βˆ’2βˆ’ 3 β‰ˆβˆ’3.7321

12 Verify that cot π‘₯= tan πœ‹ 2 βˆ’π‘₯
cot π‘₯= sin πœ‹ 2 βˆ’π‘₯ cos πœ‹ 2 βˆ’π‘₯ cot π‘₯= sin πœ‹ 2 π‘π‘œπ‘ π‘₯ βˆ’ cos πœ‹ 2 sin π‘₯ cos πœ‹ 2 cos π‘₯+ sin πœ‹ 2 sin π‘₯ cot π‘₯= 1 cos π‘₯βˆ’ 0 sin π‘₯ cos π‘₯+ 1 sin π‘₯ cot π‘₯= cos π‘₯ sin π‘₯ cot π‘₯= cot π‘₯

13

14


Download ppt "Sum and Difference Identities"

Similar presentations


Ads by Google