Download presentation
Presentation is loading. Please wait.
1
Physics 451/551 Theoretical Mechanics
G. A. Krafft Old Dominion University Jefferson Lab Lecture 18 G. A. Krafft Jefferson Lab
2
Sound Waves Properties of Sound Requires medium for propagation
Mainly longitudinal (displacement along propagation direction) Wavelength much longer than interatomic spacing so can treat medium as continuous Fundamental functions Mass density Velocity field Two fundamental equations Continuity equation (Conservation of mass) Velocity equation (Conservation of momentum) Newton’s Law in disguise
3
Fundamental Functions
Density ρ(x,y,z), mass per unit volume Velocity field
4
Continuity Equation Consider mass entering differential volume element
Mass entering box in a short time Δt Take limit Δt→0
5
By Stoke’s Theorem. Because true for all dV
Mass current density (flux) (kg/(sec m2)) Sometimes rendered in terms of the total time derivative (moving along with the flow) Incompressible flow and ρ constant
6
Pressure Scalar Displace material from a small volume dV with sides given by dA. The pressure p is defined to the force acting on the area element Pressure is normal to the area element Doesn’t depend on orientation of volume External forces (e.g., gravitational force) must be balanced by a pressure gradient to get a stationary fluid in equilibrium Pressure force (per unit volume)
7
Hydrostatic Equilibrium
Fluid at rest Fluid in motion As with density use total derivative (sometimes called material derivative or convective derivative)
8
Fluid Dynamic Equations
Manipulate with vector identity Final velocity equation One more thing: equation of state relating p and ρ
9
Energy Conservation For energy in a fixed volume
ε internal energy per unit mass Work done (first law in co-moving frame) Isentropic process (s constant, no heat transfer in)
11
Bernoulli’s Theorem Exact first integral of velocity equation when
Irrotational motion External force conservative Flow incompressible with fixed ρ Bernouli’s Theorem If flow compressible but isentropic
12
Kelvin’s Theorem on Circulation
Already discussed this in the Arnold material To linear order
13
The circulation is constant about any closed curve that moves with the fluid. If a fluid is stationary and acted on by a conservative force, the flow in a simply connected region necessarily remains irrotational.
14
Lagrangian for Isentropic Flow
Two independent field variables: ρ and Φ Lagrangian density Canonical momenta
15
Euler Lagrange Equations
Hamiltonian Density internal energy plus potential energy plus kinetic energy
16
Sound Waves Linearize about a uniform stationary state
Continuity equation Velocity equation Eisentropic equation of state
17
Flow Irrotational Take curl of velocity equation. Conclude flow irrotational Scalar wave equation Boundary conditions
18
3-D Plane Wave Solutions
Ansatz Energy flux
19
Helmholz Equation and Organ Pipes
21
Green Function for Wave Equation
Green Function in 3-D Apply Fourier Transforms Fourier transform equation to solve and integrate by parts twice
22
Green Function Solution
The Fourier transform of the solution is The solution is The Green function is
23
Alternate equation for Green function
Simplify Yukawa potential (Green function)
24
Helmholtz Equation Driven (Inhomogeneous) Wave Equation
Time Fourier Transform Wave Equation Fourier Transformed
25
Green Function Green function satisfies
26
Green function is Satisfies Also, with causal boundary conditions is
27
Causal Boundary Conditions
Can get causal B. C. by correct pole choice Gives so-called retarded Green function Green function evaluated ω k plane
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.