Presentation is loading. Please wait.

Presentation is loading. Please wait.

General Physics electromagnetism

Similar presentations


Presentation on theme: "General Physics electromagnetism"β€” Presentation transcript:

1 General Physics electromagnetism
Electric Potential Energy MARLON FLORES SACEDON

2 ElEctric PotEntial EnErgy
Electric potential energy, or electrostatic potential energy, is a potential energy (measured in joules) that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system.

3 ElEctric PotEntial EnErgy
Recall of Mechanics Workdone by the force π‘Š π‘Žβ†’π‘ = π‘Ž 𝑏 𝐹 βˆ™π‘‘ 𝑙 = π‘Ž 𝑏 πΉπ‘π‘œπ‘ πœƒ 𝑑𝑙 Workdone by gravity π‘Š π‘Žβ†’π‘ =βˆ’βˆ†π‘ˆ =βˆ’ π‘ˆ 𝑏 βˆ’ π‘ˆ π‘Ž = π‘ˆ π‘Ž βˆ’ π‘ˆ 𝑏 Work-Energy theorem π‘Š π‘Žβ†’π‘ =βˆ†πΎ = 𝐾 𝑏 βˆ’ 𝐾 π‘Ž If force is conservative, βˆ†πΎ=βˆ’βˆ†π‘ˆ 𝐾 𝑏 βˆ’ 𝐾 π‘Ž = π‘ˆ π‘Ž βˆ’ π‘ˆ 𝑏 𝐾 π‘Ž + π‘ˆ π‘Ž = 𝐾 𝑏 + π‘ˆ 𝑏 𝐸 π‘Ž = 𝐸 𝑏 Conservation of Energy

4 ElEctric PotEntial EnErgy
Electric Potential Energy in a Uniform Field Workdone by the electric force π‘Š π‘Žβ†’π‘ =𝐹𝑑 = π‘ž π‘œ 𝐸𝑑 Workdone by electric potential π‘Š π‘Žβ†’π‘ =βˆ’βˆ†π‘ˆ =βˆ’( π‘ˆ 𝑏 βˆ’ π‘ˆ π‘Ž ) =βˆ’( π‘ž π‘œ 𝐸𝑦 𝑏 βˆ’ π‘ž π‘œ 𝐸𝑦 π‘Ž ) =βˆ’ π‘ž π‘œ 𝐸( 𝑦 𝑏 βˆ’ 𝑦 π‘Ž )

5 ElEctric PotEntial EnErgy
Electric Potential Energy in a Uniform Field Workdone by the electric force π‘Š π‘Žβ†’π‘ =𝐹𝑑 = π‘ž π‘œ 𝐸𝑑 Workdone by electric potential π‘Š π‘Žβ†’π‘ =βˆ’βˆ†π‘ˆ =βˆ’( π‘ˆ 𝑏 βˆ’ π‘ˆ π‘Ž ) =βˆ’( π‘ž π‘œ 𝐸𝑦 𝑏 βˆ’ π‘ž π‘œ 𝐸𝑦 π‘Ž ) =βˆ’ π‘ž π‘œ 𝐸( 𝑦 𝑏 βˆ’ 𝑦 π‘Ž )

6 ElEctric PotEntial EnErgy
Electric Potential Energy in a Uniform Field Workdone by the electric force π‘Š π‘Žβ†’π‘ =𝐹𝑑 = π‘ž π‘œ 𝐸𝑑 Workdone by electric potential π‘Š π‘Žβ†’π‘ =βˆ’βˆ†π‘ˆ =βˆ’( π‘ˆ 𝑏 βˆ’ π‘ˆ π‘Ž ) =βˆ’( π‘ž π‘œ 𝐸𝑦 𝑏 βˆ’ π‘ž π‘œ 𝐸𝑦 π‘Ž ) =βˆ’ π‘ž π‘œ 𝐸( 𝑦 𝑏 βˆ’ 𝑦 π‘Ž )

7 ElEctric PotEntial EnErgy
Electric Potential Energy of two Point Charges 𝐹 π‘Ÿ = 1 4πœ‹ πœ– π‘œ π‘ž π‘ž π‘œ π‘Ÿ 2 π‘Š π‘Žβ†’π‘ = π‘Ÿ π‘Ž π‘Ÿ 𝑏 𝐹 π‘Ÿ π‘π‘œπ‘ βˆ…π‘‘π‘™ π‘Š π‘Žβ†’π‘ = π‘Ÿ π‘Ž π‘Ÿ 𝑏 𝐹 π‘Ÿ π‘‘π‘Ÿ = π‘Ÿ π‘Ž π‘Ÿ 𝑏 1 4πœ‹ πœ– π‘œ π‘ž π‘ž π‘œ π‘Ÿ 2 π‘π‘œπ‘ βˆ…π‘‘π‘™ = π‘Ÿ π‘Ž π‘Ÿ 𝑏 1 4πœ‹ πœ– π‘œ π‘ž π‘ž π‘œ π‘Ÿ 2 π‘‘π‘Ÿ = π‘ž π‘ž π‘œ 4πœ‹ πœ– π‘œ π‘Ÿ π‘Ž βˆ’ 1 π‘Ÿ 𝑏

8 ElEctric PotEntial EnErgy
Example: A positron (the electron’s antiparticle) has mass 9.11x10-31 kg and charge q0 = +e = x10-19C. Suppose a positron moves in the vicinity of an 𝛼 (alpha) particle, which has charge q = +2e = 3.20x10-19 C and mass 6.64x10-27 kg. The 𝛼 particle’s mass is more than 7000 times that of the positron, so we assume that the a particle remains at rest. When the positron is 1.00x10-10 m from the a particle, it is moving directly away from the a particle at 3.00x106 m/s. (a) What is the positron’s speed when the particles are 2.00x10-10 m apart? (b) What is the positron’s speed when it is very far from the a particle? Conservation of energy: 𝐸 π‘Ž = 𝐸 𝑏 (a) Find the velocity ( 𝒗 𝒃 ) at 2x10-10 m? 𝐾 π‘Ž + π‘ˆ π‘Ž = 𝐾 𝑏 + π‘ˆ 𝑏 eq 1 𝐾 π‘Ž = 1 2 π‘š 𝑣 π‘Ž 2 = π‘₯10βˆ’31 π‘˜π‘” 3x106 m/s 2 =πŸ’.πŸπŸŽπ’™ 𝟏𝟎 βˆ’πŸπŸ– 𝑱 positron qp = +1.60x10-19 C m= 9.11x10-31 kg 𝛼 particle q𝛼 = +2e = 3.20x10-19 C m= 6.64x10-27 kg π‘ˆ π‘Ž = 1 4πœ‹ πœ– π‘œ π‘ž 𝑝 π‘ž 𝛼 π‘Ÿ π‘Ž =(9π‘₯ π‘βˆ™ π‘š 2 𝐢 2 ) 1.60x10βˆ’19 C 3.20x10βˆ’19 C 1x10βˆ’10 m fixed + =πŸ’.πŸ”πŸπ’™ 𝟏𝟎 βˆ’πŸπŸ– 𝑱 vb = ? va = 3x106 m/s π‘ˆ 𝑏 = 1 4πœ‹ πœ– π‘œ π‘ž 𝑝 π‘ž 𝛼 π‘Ÿ 𝑏 =(9π‘₯ π‘βˆ™ π‘š 2 𝐢 2 ) 1.60x10βˆ’19 C 3.20x10βˆ’19 C 2x10βˆ’10 m ra= 1.00x10-10m rb= 2x10-10m =𝟐.πŸ‘π’™ 𝟏𝟎 βˆ’πŸπŸ– 𝑱 𝐾 𝑏 = 1 2 π‘š 𝑣 𝑏 2 Substitute in eq.1, then solve for 𝑣 𝑏 : 𝑣 𝑏 =3.8π‘₯ π‘š/𝑠

9 ElEctric PotEntial EnErgy
Example: A positron (the electron’s antiparticle) has mass 9.11x10-31 kg and charge q0 = +e = x10-19C. Suppose a positron moves in the vicinity of an 𝛼 (alpha) particle, which has charge q = +2e = 3.20x10-19 C and mass 6.64x10-27 kg. The 𝛼 particle’s mass is more than 7000 times that of the positron, so we assume that the a particle remains at rest. When the positron is 1.00x10-10 m from the a particle, it is moving directly away from the a particle at 3.00x106 m/s. (a) What is the positron’s speed when the particles are 2.00x10-10 m apart? (b) What is the positron’s speed when it is very far from the a particle? Find the velocity ( 𝒗 𝒃 ) at infinite distance ( 𝒓 𝒃 =∞)? positron qp = +1.60x10-19 C m= 9.11x10-31 kg 𝛼 particle q𝛼 = +2e = 3.20x10-19 C m= 6.64x10-27 kg fixed + va = 3x106 m/s ra= 1.00x10-10m

10 ElEctric PotEntial EnErgy
Example: A positron (the electron’s antiparticle) has mass 9.11x10-31 kg and charge q0 = +e = x10-19C. Suppose a positron moves in the vicinity of an 𝛼 (alpha) particle, which has charge q = +2e = 3.20x10-19 C and mass 6.64x10-27 kg. The 𝛼 particle’s mass is more than 7000 times that of the positron, so we assume that the a particle remains at rest. When the positron is 1.00x10-10 m from the a particle, it is moving directly away from the a particle at 3.00x106 m/s. (a) What is the positron’s speed when the particles are 2.00x10-10 m apart? (b) What is the positron’s speed when it is very far from the a particle? Conservation of energy: 𝐸 π‘Ž = 𝐸 𝑏 Find the velocity ( 𝒗 𝒃 ) at infinite distance ( 𝒓 𝒃 =∞)? 𝐾 π‘Ž + π‘ˆ π‘Ž = 𝐾 𝑏 + π‘ˆ 𝑏 eq 1 𝐾 π‘Ž = 1 2 π‘š 𝑣 π‘Ž 2 = π‘₯10βˆ’31 π‘˜π‘” 3x106 m/s 2 =πŸ’.πŸπŸŽπ’™ 𝟏𝟎 βˆ’πŸπŸ– 𝑱 positron qp = +1.60x10-19 C m= 9.11x10-31 kg 𝛼 particle q𝛼 = +2e = 3.20x10-19 C m= 6.64x10-27 kg π‘ˆ π‘Ž = 1 4πœ‹ πœ– π‘œ π‘ž 𝑝 π‘ž 𝛼 π‘Ÿ π‘Ž =(9π‘₯ π‘βˆ™ π‘š 2 𝐢 2 ) 1.60x10βˆ’19 C 3.20x10βˆ’19 C 1x10βˆ’10 m fixed + =πŸ’.πŸ”πŸπ’™ 𝟏𝟎 βˆ’πŸπŸ– 𝑱 vb = ? va = 3x106 m/s π‘ˆ 𝑏 = 1 4πœ‹ πœ– π‘œ π‘ž 𝑝 π‘ž 𝛼 π‘Ÿ 𝑏 =(9π‘₯ π‘βˆ™ π‘š 2 𝐢 2 ) 1.60x10βˆ’19 C 3.20x10βˆ’19 C ∞ ra= 1.00x10-10m rb= ∞ =𝟎 𝐾 𝑏 = 1 2 π‘š 𝑣 𝑏 2 Substitute in eq.1, then solve for 𝑣 𝑏 : 𝑣 𝑏 =4.4π‘₯ π‘š/𝑠

11 potential Difference Problem: In figure, a dust particle with mass π‘š=5.0π‘₯ 10 βˆ’9 π‘˜π‘”=5.0 πœ‡π‘” and charge π‘ž=2.0 𝑛𝐢 starts from rest and moves in a straight line from point π‘Ž to point 𝑏. What is its speed 𝑣 at point 𝑏. The force acts on dust particle is a conservative force. So, from conservation of energy… 𝐸 π‘Ž = 𝐸 𝑏 𝑉 π‘Ž =9π‘₯ 𝑁. π‘š 2 π‘˜π‘” π‘₯ 10 βˆ’9 𝐢 0.01π‘š + βˆ’3π‘₯ 10 βˆ’9 𝐢 0.02π‘š =1350 𝑉 𝐾 π‘Ž + π‘ˆ π‘Ž = 𝐾 𝑏 + π‘ˆ 𝑏 0+ π‘žπ‘‰ π‘Ž = 1 2 π‘š 𝑣 2 + π‘žπ‘‰ 𝑏 𝑉 𝑏 =9π‘₯ 𝑁. π‘š 2 π‘˜π‘” π‘₯ 10 βˆ’9 𝐢 0.02π‘š + βˆ’3π‘₯ 10 βˆ’9 𝐢 0.01π‘š =βˆ’1350 𝑉 1 2 π‘š 𝑣 2 = π‘žπ‘‰ π‘Ž βˆ’ π‘žπ‘‰ 𝑏 𝑉 π‘Ž βˆ’ 𝑉 𝑏 =1350βˆ’ βˆ’1350 =2700 𝑉 𝑣= 2π‘ž 𝑉 π‘Ž βˆ’ 𝑉 𝑏 π‘š 𝑣= 2 2π‘₯ 10 βˆ’9 𝐢 𝑉 5π‘₯ 10 βˆ’9 π‘˜π‘” =46 π‘š 𝑠

12 Assignment

13 Assignment

14 Assignment

15 Assignment

16 Answers to odd numbers

17 eNd


Download ppt "General Physics electromagnetism"

Similar presentations


Ads by Google