Presentation is loading. Please wait.

Presentation is loading. Please wait.

Professor Ronald L. Carter

Similar presentations


Presentation on theme: "Professor Ronald L. Carter"— Presentation transcript:

1 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/
Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002 Professor Ronald L. Carter L15 05Mar02

2 Charge components in the BJT
From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc. L15 05Mar02

3 Gummel-Poon Static npn Circuit Model
B RBB ILC IBR ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B’ ILE IBF RE E L15 05Mar02

4 Gummel-Poon Static npn Circuit Model
B RBB ILC IBR ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B’ ILE IBF RE E L15 05Mar02

5 Gummel-Poon Static Par.
NAME PARAMETER UNIT DEFAULT IS transport saturation current A 1.0e-16 BF ideal maximum forward beta - 100 NF forward current emission coef VAF forward Early voltage V infinite ISE B-E leakage saturation current A 0 NE B-E leakage emission coefficient - 1.5 BR ideal maximum reverse beta - 1 NR reverse current emission coefficient - 1 VAR reverse Early voltage V infinite ISC B-C leakage saturation current A 0 NC B-C leakage emission coefficient - 2 EG energy gap (IS dep on T) eV 1.11 XTI temperature exponent for IS - 3 L15 05Mar02

6 Gummel-Poon Static Model Parameters
NAME PARAMETER UNIT DEFAULT IKF corner for forward beta A infinite high current roll-off IKR corner for reverse beta A infinite RB zero bias base resistance W 0 IRB current where base resistance A infinite falls halfway to its min value RBM minimum base resistance W RB at high currents RE emitter resistance W 0 RC collector resistance W 0 TNOM parameter - meas. temperature °C 27 L15 05Mar02

7 Gummel Poon npn Model Equations
IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR )  { + [ + (BFIBF/IKF + BRIBR/IKR)]1/2 } L15 05Mar02

8 Gummel Poon Base Resistance
If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) [1+144iB/(p2IRB)]1/2-1 z = (24/p2)(iB/IRB)1/2 Regarding (i) RBB and (x) RTh on slide 22, RB = RBM + DR/(1+iB/IRB)aRB , DR = RB - RBM L15 05Mar02

9 BJT Characterization Forward Gummel
iC RC iB RE RB vBEx vBC vBE + - vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexpf(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexpf(vBE/NFVt)/QB L15 05Mar02

10 Ideal F-G Data iC and iB (A) vs. vBE (V) N = 1  1/slope = 59.5 mV/dec
L15 05Mar02

11 BJT Characterization Reverse Gummel
iE RC iB RE RB vBCx vBC vBE + - vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = ISexpf(vBC/NRVt)/BR + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt)/QB L15 05Mar02

12 Ideal R-G Data iE and iB (A) vs. vBE (V) N = 1  1/slope = 59.5 mV/dec
L15 05Mar02

13 Distributed resis- tance in a planar BJT
emitter base collector reg 4 reg 3 reg 2 reg 1 coll base & emitter contact regions The base current must flow lateral to the wafer surface Assume E & C cur-rents perpendicular Each region of the base adds a term of lateral res.  vBE diminishes as current flows L15 05Mar02

14 Simulation of 2- dim. current flow
=  DV  Both sources have same current iB1 = iB. The effective value of the 2-dim. base resistance is Rbb’(iB) = DV/iB = RBBTh Distributed device is repr. by Q1, Q2, … Qn Area of Q is same as the total area of the distributed device. Both devices have the same vCE = VCC L15 05Mar02

15 Analytical solution for distributed Rbb
Analytical solution and SPICE simulation both fit RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB L15 05Mar02

16 Distributed base resistance function
Normalized base resis-tance vs. current. (i) RBB/RBmax, (ii) RBBSPICE/RBmax, after fitting RBB and RBBSPICE to RBBTh (x) RBBTh/RBmax. FromAn Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.-St.Electr. 41, pp , 1997. RBBTh = RBM + DR/(1+iB/IRB)aRB (DR = RB - RBM ) L15 05Mar02

17 Gummel Poon Base Resistance
If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) [1+144iB/(p2IRB)]1/2-1 z = (24/p2)(iB/IRB)1/2 Regarding (i) RBB and (x) RTh on previous slide, RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB L15 05Mar02

18 Gummel-Poon Static npn Circuit Model
B RBB ILC IBR ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B’ ILE IBF RE E L15 05Mar02

19 Gummel Poon npn Model Equations
IBF = IS expf(vBE/NFVt)/BF ILE = ISE expf(vBE/NEVt) IBR = IS expf(vBC/NRVt)/BR ILC = ISC expf(vBC/NCVt) ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB QB = { + [ + (BF IBF/IKF + BR IBR/IKR)]1/2 }  (1 - vBC/VAF - vBE/VAR )-1 L15 05Mar02

20 VAR Parameter Extraction (rEarly)
iE = - IEC = (IS/QB)exp(vBC/NRVt), where ICC = 0, and QB-1 = (1-vBC/VAF-vBE/VAR ) {IKR terms }-1, so since vBE = vBC - vEC, VAR = iE/[iE/vBE]vBC iE iB vEC vBC 0.2 < vEC < 5.0 0.7 < vBC < 0.9 Reverse Active Operation L15 05Mar02

21 Reverse Early Data for VAR
At a particular data point, an effective VAR value can be calculated VAReff = iE/[iE/vBE]vBC The most accurate is at vBE = 0 (why?) vBC = 0.85 V vBC = 0.75 V iE(A) vs. vEC (V) L15 05Mar02

22 VAF Parameter Extraction (fEarly)
iC = ICC = (IS/QB)exp(vBE/NFVt), where ICE = 0, and QB-1 = (1-vBC/VAF-vBE/VAR ) {IKF terms }-1, so since vBC = vBE - vCE, VAF = iC/[iC/vBC]vBE Forward Active Operation iC iB vCE vBE 0.2 < vCE < 5.0 0.7 < vBE < 0.9 L15 05Mar02

23 Forward Early Data for VAF
At a particular data point, an effective VAF value can be calculated VAFeff = iC/[iC/vBC]vBE The most accurate is at vBC = 0 (why?) vBE = 0.85 V vBE = 0.75 V iC(A) vs. vCE (V) L15 05Mar02

24 BJT Characterization Forward Gummel
iC RC iB RE RB vBEx vBC vBE + - vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexp(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ) {IKF terms }-1 L15 05Mar02

25 Forward Gummel Data Sensitivities
vBCx = 0 Region a - IKFIS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE c iC b d iB e iC(A),iB(A) vs. vBE(V) L15 05Mar02

26 Region (a) fg Data Sensitivities
Region a - IKFIS, RB, RE, NF, VAR iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms }-1 L15 05Mar02

27 Region (b) fg Data Sensitivities
Region b - IS, NF, VAR, RB, RE iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms }-1 L15 05Mar02

28 Region (c) fg Data Sensitivities
Region c - IS/BF, NF, RB, RE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) L15 05Mar02

29 Region (d) fg Data Sensitivities
Region d - IS/BF, NF iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) L15 05Mar02

30 Region (e) fg Data Sensitivities
Region e - ISE, NE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) L15 05Mar02


Download ppt "Professor Ronald L. Carter"

Similar presentations


Ads by Google