Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sequences & the Binomial Theorem Chapter:___

Similar presentations


Presentation on theme: "Sequences & the Binomial Theorem Chapter:___"โ€” Presentation transcript:

1 Sequences & the Binomial Theorem Chapter:___

2 Sequences Section:____

3 Sequences Sequence: a function whose domain is the set of positive integers.(A sequence is displayed as a list of ordered values called terms that follows a specific pattern: ๐’‚ ๐Ÿ , ๐’‚ ๐Ÿ , ๐’‚ ๐Ÿ‘ , โ€ฆ, ๐’‚ ๐’ general term: formula for ๐‘› ๐‘กโ„Ž term of sequence Calculator functions & commands for sequences: ๐’! ๐‘› factorial To calculate 5!= 1 โˆ™ 2 โˆ™ 3 โˆ™ 4 โˆ™ 5 =120 :seq( command To find ๐‘› terms Enter seq(formula,X,start,end) :sum( command To find sum of ๐‘› terms. Enter sum(seq(formula,X,start,end) 1st term 2nd term 3rd term ๐‘›๐‘กโ„Ž term TI-83/84: MATH โ†’ PRB TI-83/84: 2nd STAT โ†’ OPS TI-83/84: 2nd STAT โ†’ MATH

4 Sequences Recursive sequence: a sequence in which the first term(or first few terms) is given and the ๐‘› ๐‘กโ„Ž term formula involves one or more preceding terms. Notation: ๐‘Ž ๐‘›โˆ’1 means one term before ๐‘Ž ๐‘› ๐‘Ž ๐‘›+1 means one term after ๐‘Ž ๐‘› Components of Summation notation: p. 643 to ๐‘› ๐‘กโ„Ž term. ๐‘Ž ๐‘˜ = ๐‘Ž 1 + ๐‘Ž 2 + ๐‘Ž 3 +โ‹ฏ ๐‘Ž ๐‘› ๐‘˜=1 ๐‘› Add terms of sequence ( ๐‘Ž ๐‘˜ ) from 1๐‘ ๐‘ก term

5 Sequences Example: Find the first 5 terms of the sequence whose general term is: ๐‘Ž ๐‘› = โˆ’1 ๐‘› (2๐‘›) First 5 terms: Or seq(formula,X,start,end) seq( โˆ’1 X 2X ,X,1,5) ๐‘Ž 1 = โˆ’ โˆ™1 =โˆ’2 ๐‘Ž 2 = โˆ’ โˆ™2 = 4 Do you notice the specific pattern of this sequence? ๐‘Ž 3 = โˆ’ โˆ™3 =โˆ’6 ๐‘Ž 4 = โˆ’ โˆ™4 = 8 ๐‘Ž 5 = โˆ’ โˆ™5 =โˆ’10

6 Sequences Example: Find the ๐‘› ๐‘กโ„Ž term of the sequence , 3 4 , 4 9 , 5 16 ,โ€ฆ ๐‘Ž 1 = 2 1 , ๐‘Ž 2 = 3 4 , ๐‘Ž 3 = 4 9 , ๐‘Ž 4 = 5 16 , โ€ฆ, ๐‘Ž ๐‘› = ? ? Numerator: 1+1, 2+1, 3+1, 4+1, โ€ฆ. Denominator: 1โˆ™1, 2โˆ™2, 3โˆ™3, 4โˆ™4, โ€ฆ. Formula for ๐‘› ๐‘กโ„Ž term: ๐‘›+1 ๐‘›โˆ™๐‘› ๐‘Ž ๐‘› = ๐‘›+1 ๐‘› 2

7 Sequences Example: Find the first 5 terms of the recursive sequence. ๐‘Ž 1 =2, ๐‘Ž 2 =6, ๐‘Ž ๐‘› = ๐‘Ž ๐‘›โˆ’1 โˆ™ ๐‘Ž ๐‘›โˆ’2 ๐‘Ž 1 = ๐‘Ž 2 = ๐‘Ž ๐‘› = ๐‘Ž ๐‘›โˆ’1 โˆ™ ๐‘Ž ๐‘›โˆ’2 2 (1 term before ๐‘Ž ๐‘› )โˆ™(2 terms before ๐‘Ž ๐‘› ) 6 ๐‘Ž 3 = ๐‘Ž 2 โˆ™ ๐‘Ž 1 = 6 2 = 12 ๐‘Ž 4 = ๐‘Ž 3 โˆ™ ๐‘Ž 2 = 12 6 = 72 ๐‘Ž 5 = ๐‘Ž 4 โˆ™ ๐‘Ž 3 = =864

8

9 Arithmetic Sequences Section:____

10 Arithmetic Sequences 1 Arithmetic Sequence(AS): a sequence in which the difference ๐’… between consecutive terms is always the same number. Once you know ๐’‚ ๐Ÿ and ๐’…, you can find term ๐’‚ ๐Ÿ by adding ๐’… to ๐’‚ ๐Ÿ and so on. To find common difference ๐’… for consecutive terms ๐’‚ ๐’โˆ’๐Ÿ , ๐’‚ ๐’ : ๐’…= ๐’‚ ๐’ โˆ’ ๐’‚ ๐’โˆ’๐Ÿ nonconsecutive terms ๐’‚ ๐’Œ , ๐’‚ ๐’ : ๐’…= ๐’‚ ๐’ โˆ’ ๐’‚ ๐’Œ ๐’โˆ’๐’Œ To find ๐’ ๐’•๐’‰ term of an AS : ๐’‚ ๐’ = ๐’‚ ๐Ÿ + ๐’โˆ’๐Ÿ ๐’… To find Sum of First ๐’ terms of an AS: ๐‘บ ๐’ = ๐’ ๐Ÿ [ ๐’‚ ๐Ÿ + ๐’‚ ๐’ ] or ๐‘บ ๐’ = ๐’ ๐Ÿ [๐Ÿ ๐’‚ ๐Ÿ +(๐’โˆ’๐Ÿ)๐’…] ๐‘Ž 1 ๐‘Ž 2 ๐‘Ž 3 โ€ฆ ๐‘Ž ๐‘›โˆ’1 ๐‘Ž ๐‘› +๐‘‘ +๐‘‘ +๐‘‘ +๐‘‘ +๐‘‘

11 Arithmetic Sequences 2 Example: Find the common difference ๐’… and find first 4 terms of the Arithmetic Sequence ๐‘Ž ๐‘› ={ ๐‘›} Find terms. Find ๐’…. On TI-83/84 (1)= 7 10 seq(( 1 2 )+( 1 5 )X, X, 1, 4) ๐‘Ž 1 = (2)= 9 10 ๐‘Ž 2 = (3)= 11 10 ๐‘Ž 3 = (4)= 13 10 ๐‘Ž 4 = = 9 10 โˆ’ 7 10 = 2 10 = 1 5 ๐’…= ๐’‚ ๐’ โˆ’ ๐’‚ ๐’โˆ’๐Ÿ

12 Arithmetic Sequences 3 Example: Find ๐’‚ ๐Ÿ , ๐’…, and specified formulas for Arithmetic Sequence having: ๐‘กโ„Ž term is 3; ๐‘›๐‘‘ term is 71 Find ๐’… (nonconsecutive terms): Find ๐’‚ ๐Ÿ . Find recursive formula: Find nth term formula: (71โˆ’3) (22โˆ’5) = ๐‘Ž ๐‘› โˆ’ ๐‘Ž ๐‘˜ ๐‘›โˆ’๐‘˜ = 4 Solve ๐‘Ž 5 = ๐’‚ ๐Ÿ + ๐‘›โˆ’1 (๐’…) for ๐’‚ ๐Ÿ . ๐‘Ž 5 โˆ’ ๐‘›โˆ’1 (๐’…)= ๐’‚ ๐Ÿ 3โˆ’ 5โˆ’1 4 = โˆ’13 ๐‘Ž ๐‘› = ๐‘Ž ๐‘›โˆ’1 +๐’…= ๐‘Ž ๐‘›โˆ’1 +4 ๐’‚ ๐’ = ๐’‚ ๐Ÿ +(๐’โˆ’1)๐’… ๐‘Ž ๐‘› =โˆ’13+ ๐‘›โˆ’1 4 = 4๐‘›โˆ’17

13 Arithmetic Sequences 4 Example: Find the sum: 4+6+8+โ‹ฏ+80 Find ๐’…:
+๐Ÿ +๐Ÿ Example: Find the sum: โ‹ฏ+80 Find ๐’…: Find number of terms ๐’ in the sum: Find sum ๐‘บ ๐’ = ๐’ 2 [ ๐’‚ ๐Ÿ + ๐’‚ ๐’ ]: ๐’‚ ๐Ÿ ๐’‚ ๐’ ๐’…= ๐‘Ž ๐‘› โˆ’ ๐‘Ž ๐‘›โˆ’1 ๐’…=6โˆ’4=2 Solve ๐’‚ ๐’ = ๐’‚ ๐Ÿ + ๐’โˆ’1 ๐’… for ๐’. 80=4+(๐’โˆ’1)(2) 76=(๐’โˆ’๐Ÿ)(2) 38=๐’โˆ’๐Ÿ 39=๐’ ๐‘บ 39 = = 1638

14 Arithmetic Sequences 5 Example: Find the sum:
๐‘›=1 156 (โˆ’2๐‘›+1) Example: Find the sum: Use ๐‘บ ๐’ = ๐’ 2 2 ๐’‚ ๐Ÿ + ๐’โˆ’1 ๐’… to find sum. Find the sum. TI-83/84: Enter sum(seq(โˆ’2X+1, X, 1, 156) Summation shows ๐’=๐Ÿ๐Ÿ“๐Ÿ”. Find ๐’… from ๐’‚ ๐Ÿ and ๐’‚ ๐Ÿ . ๐’‚ ๐Ÿ =โˆ’2 1 +1=โˆ’๐Ÿ ๐’‚ ๐Ÿ =โˆ’2 2 +1=โˆ’๐Ÿ‘ ๐’…= ๐’‚ ๐Ÿ โˆ’ ๐’‚ ๐Ÿ ๐’…= โˆ’๐Ÿ‘ โˆ’ โˆ’๐Ÿ =โˆ’๐Ÿ ๐‘บ 156 = ๐Ÿ๐Ÿ“๐Ÿ” 2 2 โˆ’๐Ÿ + ๐Ÿ๐Ÿ“๐Ÿ”โˆ’1 โˆ’๐Ÿ = โˆ’24336

15

16 Geometric Sequences Section:____

17 Geometric Sequences 1 Geometric Sequence(GS): a sequence in which consecutive terms have the same common ratio ๐’“. You can find term ๐’‚ ๐Ÿ by multiplying ๐’“ to ๐’‚ ๐Ÿ and so on. To find common ratio ๐’“ for: consecutive terms ๐‘Ž ๐‘› , ๐‘Ž ๐‘›โˆ’ nonconsecutive terms ๐‘Ž ๐‘› , ๐‘Ž ๐‘˜ To find ๐’ ๐’•๐’‰ term of a GS: To find Sum of First ๐’ terms of a GS: Infinite Geometric Series: diverges if ๐’“ >๐Ÿ , therefore sum does not exist. (Sum gets larger as terms get larger.) converges if ๐’“ <๐Ÿ , therefore sum does exist. (Sum approaches limit as terms get smaller.) ๐‘Ž 1 ๐‘Ž 2 ๐‘Ž 3 โ€ฆ ๐‘Ž ๐‘›โˆ’1 ๐‘Ž ๐‘› โˆ™๐‘Ÿ โˆ™๐‘Ÿ โˆ™๐‘Ÿ โˆ™๐‘Ÿ โˆ™๐‘Ÿ ๐’“= ๐’‚ ๐’ ๐’‚ ๐’Œ (๐’โˆ’๐’Œ) ๐’“= (๐’‚ ๐’ ) ( ๐’‚ ๐’โˆ’๐Ÿ ) ๐’‚ ๐’ = ๐’‚ ๐Ÿ ๐’“ ๐’โˆ’๐Ÿ ๐‘บ ๐’ = ๐’‚ ๐Ÿ โˆ™ (๐Ÿโˆ’ ๐’“ ๐’ ) (๐Ÿโˆ’๐’“) ๐‘บ โˆž = (๐’‚ ๐Ÿ ) (๐Ÿโˆ’๐’“)

18 Geometric Sequences 2 Example: Find the 7th term of the Geometric Sequence. Find ๐’“. Find ๐’‚ ๐Ÿ• . Use ๐’‚ ๐’ = ๐’‚ ๐Ÿ ๐’“ ๐’โˆ’๐Ÿ โˆ™(๐Ÿ‘) โˆ™(๐Ÿ“) 1 2 , , , โ€ฆ ๐’“= ๐‘Ž ๐‘Ž 1 = = 3 5 ๐’‚ ๐Ÿ• = ๐Ÿ ๐Ÿ ๐Ÿ‘ ๐Ÿ“ (๐Ÿ•โˆ’1) =

19 Geometric Sequences 3 Example: Find the ๐‘›๐‘กโ„Ž term of the Geometric Sequence described. The ๐‘› ๐‘กโ„Ž term is the formula of the sequence ๐’‚ ๐’ = ๐’‚ ๐Ÿ (๐’“) ๐’โˆ’1 You are given ๐’“. Need to find ๐’‚ ๐Ÿ . Solve for ๐’‚ ๐Ÿ . ๐‘Ž 7 =2916 , ๐‘Ÿ=โˆ’3 ๐‘Ž 7 = ๐’‚ ๐Ÿ (โˆ’3) ๐Ÿ•โˆ’1 2916= ๐’‚ ๐Ÿ (โˆ’3) ๐Ÿ•โˆ’1 2916= ๐’‚ ๐Ÿ (729) 4= ๐’‚ ๐Ÿ ๐’‚ ๐’ = ๐‘Ž 1 (๐‘Ÿ) ๐‘›โˆ’1 = 4 (โˆ’3) ๐‘›โˆ’1

20 Geometric Sequences 4 Example: Find the sum of the Geometric Sequence. Round to three decimal places. TI-83/84: Enter sum(seq( ๐‘›=1 20 [(2)โˆ™ ๐‘› ] start end ๐‘› ๐‘กโ„Ž term X , X, 1, 20) ๐‘บ ๐’ = ๐‘บ ๐’ = 5.981

21 Geometric Sequences 5 Example: If the infinite geometric series converges, find the sum. โ€ฆ Find ratio ๐’“. โ€ฆ ๐’“= ( ๐Ÿ๐Ÿ“ ๐Ÿ ) (๐Ÿ“) = ๐Ÿ‘ ๐Ÿ . Since ratio |๐’“|>๐Ÿ, terms get larger, series diverges. ๐’“= ( ๐Ÿ๐Ÿ“ ๐Ÿ’ ) (๐Ÿ“) = ๐Ÿ‘ ๐Ÿ’ . Since ratio |๐’“|<๐Ÿ, terms get smaller, series converges. ๐‘บ โˆž = (๐’‚ ๐Ÿ ) (๐Ÿโˆ’๐’“) = (๐Ÿ“) [๐Ÿโˆ’ ๐Ÿ‘ ๐Ÿ’ ] = 20

22

23 Binomial Thereom Section:____

24 Binomial Theorem 1 Binomial Theorem: formula for expanding binomial expressions (๐’‚+๐’ƒ) ๐’ with positive integer powers ๐’. Number of terms is ๐’+1. To evaluate ๐’ ๐’“ : ๐’ ๐’“ = (๐’!) ๐’“! [ ๐’โˆ’๐’“ !] TI-83/84: To expand (๐’‚+๐’ƒ) ๐’ will require a pattern based on the expansion formula: (๐’‚+๐’ƒ) ๐’ = ๐‘˜=0 ๐’ ๐’ ๐‘˜ (๐’‚) ๐’โˆ’๐‘˜ (๐’ƒ) ๐‘˜ = MATH โ†’ PRB โ†’ ๐’ ๐‘ช ๐’“ ๐’ 0 (๐’‚) ๐’ (๐’ƒ) 0 + ๐’ 1 (๐’‚) ๐’โˆ’1 (๐’ƒ) 1 + ๐’ 2 (๐’‚) ๐’โˆ’2 (๐’ƒ) 2 +โ‹ฏ+ ๐’ ๐’ (๐’‚) 0 (๐’ƒ) ๐’ 1๐‘ ๐‘ก term ๐‘˜=0 2๐‘›๐‘‘ term ๐‘˜=1 3๐‘Ÿ๐‘‘ term ๐‘˜=2 (๐‘›+1)๐‘ ๐‘ก term ๐‘˜=๐‘›

25 Binomial Theorem 2 Example: Evaluate the expression 10 8 .
Use ๐’ ๐’“ = (๐’!) ๐’“! [ ๐’โˆ’๐’“ !] . TI-83/84: Enter 10 8 = (10!) 8! [ 10โˆ’8 !] = (10!) 8! 2! ๐Ÿ ๐Ÿ“ ๐Ÿ = (1โˆ™2โˆ™3โˆ™4โˆ™5โˆ™6โˆ™7โˆ™8โˆ™9โˆ™10) 1โˆ™2โˆ™3โˆ™4โˆ™5โˆ™6โˆ™7โˆ™8 1โˆ™2 = 45 10 MATH โ†’ PRB โ†’ ๐’ ๐‘ช ๐’“ 8

26 Binomial Theorem 3 Example: Expand the expression ( ๐‘ฅ 2 +2 ๐‘ฆ 3 ) 4 .
There are 4+1 terms having form ๐’ ๐‘˜ (๐’‚) ๐’โˆ’๐‘˜ (๐’ƒ) ๐‘˜ : 1st term 2nd term 3rd term 4th term 5th term = ( ๐‘ฅ 2 ) ๐Ÿ’ (2 ๐‘ฆ 3 ) ๐ŸŽ = (1) (๐‘ฅ 8 )(1) = ๐‘ฅ 8 = ( ๐‘ฅ 2 ) ๐Ÿ‘ (2 ๐‘ฆ 3 ) ๐Ÿ = 4 ๐‘ฅ ๐‘ฆ = 8 ๐‘ฅ 6 ๐‘ฆ 3 = ( ๐‘ฅ 2 ) ๐Ÿ (2 ๐‘ฆ 3 ) ๐Ÿ = 6 ๐‘ฅ ๐‘ฆ = 24 ๐‘ฅ 4 ๐‘ฆ 6 = ( ๐‘ฅ 2 ) ๐Ÿ (2 ๐‘ฆ 3 ) ๐Ÿ‘ = 4 ๐‘ฅ ๐‘ฆ = 32 ๐‘ฅ 2 ๐‘ฆ 9 = ( ๐‘ฅ 2 ) ๐ŸŽ (2 ๐‘ฆ 3 ) ๐Ÿ’ = ๐‘ฆ 12 = 16 ๐‘ฆ 12 ๐‘ฅ 8 +8 ๐‘ฅ 6 ๐‘ฆ ๐‘ฅ 4 ๐‘ฆ ๐‘ฅ 2 ๐‘ฆ ๐‘ฆ 12


Download ppt "Sequences & the Binomial Theorem Chapter:___"

Similar presentations


Ads by Google