Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solving Quadratic Equations by Factorisation

Similar presentations


Presentation on theme: "Solving Quadratic Equations by Factorisation"β€” Presentation transcript:

1 Solving Quadratic Equations by Factorisation
Slideshow γ€€Mathematics Mr Richard Sasakiγ€€γ€€

2 Objectives Understand the solutions for a quadratic in the form π‘₯+π‘Ž π‘₯+𝑏 =0 Be able to factorise quadratics to help solve them Be able to solve quadratic equations where solutions may be in surd form (no π‘₯ co-efficient.)

3 Factorised Quadratics
Factorising quadratic equations is the quickest way of solving simple cases. After we factorise when the π‘₯ 2 coefficient is 1, we get something in the form π‘₯+π‘Ž π‘₯+𝑏 =0. What are the solutions? π‘₯=βˆ’π‘Ž or π‘₯=βˆ’π‘ Why? If some π‘šβˆ™π‘›=0, either π‘š=0 or 𝑛=0, right? For the same reason, if π‘₯+π‘Ž π‘₯+𝑏 =0, either π‘₯+π‘Ž=0 or π‘₯+𝑏=0. So π‘₯=βˆ’π‘Ž or π‘₯=βˆ’π‘.

4 Other Quadratics What are the solutions for π‘Ž π‘₯+𝑏 π‘₯+𝑐 =0?
We can divide by π‘Ž and still get π‘₯+𝑏 π‘₯+𝑐 =0 so π‘₯=βˆ’π‘ or π‘₯=βˆ’π‘. What are the solutions for π‘Ž 𝑏π‘₯+𝑐 π‘šπ‘₯+𝑛 =0? We can divide by π‘Ž and get 𝑏π‘₯+𝑐 π‘šπ‘₯+𝑛 =0. We would then get 𝑏π‘₯+𝑐=0 or π‘šπ‘₯+𝑛=0 If we make π‘₯ the subject, π‘₯=βˆ’ 𝑐 𝑏 or π‘₯=βˆ’ 𝑛 π‘š Let’s practice. Solve… π‘₯+3 π‘₯βˆ’4 =0 π‘₯=βˆ’3 or π‘₯=4. 2 π‘₯+7 π‘₯βˆ’1 =0 π‘₯=βˆ’7 or π‘₯=1. 3π‘₯+2 2π‘₯βˆ’5 =0 π‘₯=βˆ’ 2 3 or π‘₯= 5 2 .

5 π‘₯=βˆ’2 or π‘₯=9 π‘₯=3 or π‘₯=6 π‘₯=βˆ’5 or π‘₯=βˆ’4 π‘₯=8 π‘₯= 1 2 or π‘₯=βˆ’3 π‘₯=3 or π‘₯=0
π‘₯=βˆ’1 π‘₯= 1 2 or π‘₯=βˆ’3 π‘₯=3 or π‘₯=0 π‘₯=βˆ’2 or π‘₯=0 π‘₯= 2 3 or π‘₯=βˆ’ 7 2 π‘₯= 9 2 or π‘₯=βˆ’5 π‘₯= 3 π‘₯=βˆ’ 5 or π‘₯=βˆ’ 2 π‘₯= 3 or π‘₯=βˆ’ π‘₯=βˆ’ or π‘₯= π‘₯=βˆ’ or π‘₯= π‘₯= or π‘₯= βˆ’

6 Factorisation Let’s solve equations in the form π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐=0 where π‘Ž, 𝑏, π‘βˆˆβ„. If π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐=0, we can solve for π‘₯ after factorising. Example Factorise and hence, solve π‘₯ 2 βˆ’5π‘₯βˆ’14=0. π‘₯+2 π‘₯βˆ’7 =0 ∴π‘₯=βˆ’2 or 7. Example Factorise and hence, solve 2 π‘₯ 2 +7π‘₯βˆ’15=0. π‘Žβˆ™π‘=βˆ’30, π‘Ž+𝑏=7 β‡’π‘Ž= , 𝑏= 10 βˆ’3 2 π‘₯ 2 +10π‘₯βˆ’3π‘₯βˆ’15=0 β‡’ 2π‘₯ π‘₯+5 βˆ’3 π‘₯+5 =0β‡’ (2π‘₯βˆ’3)(π‘₯+5)=0β‡’ π‘₯= 3 2 , π‘₯=βˆ’5

7 Answers - Easy π‘₯=βˆ’3 or π‘₯=βˆ’1 π‘₯=2 or π‘₯=βˆ’1 π‘₯=βˆ’5 or π‘₯=4 π‘₯=3 or π‘₯=5 π‘₯=Β±2
π‘₯=Β±7 π‘₯=βˆ’7 π‘₯=4 π‘₯=βˆ’9 or π‘₯=8 π‘₯=10 or π‘₯=βˆ’3 π‘₯=βˆ’13 or π‘₯=8 π‘₯=9 or π‘₯=16 π‘₯=βˆ’5 or π‘₯=0 π‘₯=7 or π‘₯=0 π‘₯=βˆ’7 or π‘₯=βˆ’9 π‘₯=βˆ’5 or π‘₯=3

8 Answers - Hard π‘₯=βˆ’5 or π‘₯=3 π‘₯=βˆ’2 or π‘₯=8 π‘₯=βˆ’4 or π‘₯=2 π‘₯=βˆ’7 or π‘₯=3
π‘₯=Β± 1 2 π‘₯=Β± 3 4 π‘₯=βˆ’ or π‘₯=βˆ’ 4 3 π‘₯=0 or π‘₯=βˆ’ 5 2 π‘₯=0 or π‘₯= 1 4 π‘₯= or π‘₯=βˆ’14 π‘₯= or π‘₯=βˆ’ 1 2 π‘₯=βˆ’ 1 2 π‘₯= 4 3 π‘₯=βˆ’ 3 2

9 Factorisation We know how to solve equations in the form π‘Žπ‘₯ 2 =𝑐. We should consider the root symbol to imply just the positive square root. Example Solve 2 π‘₯ 2 =12. 2 π‘₯ 2 =12β‡’ π‘₯ 2 =6β‡’ π‘₯=Β± 6 How can we write the expression in the form π‘Ž π‘₯+𝑏 π‘₯+𝑐 =0?

10 No π‘₯βˆ’ coefficient Example
Write 2 π‘₯ 2 =12 in the form π‘Ž π‘₯βˆ’π‘ π‘₯+𝑏 =0 where π‘Žβˆˆβ„€, π‘βˆˆβ„. Do not simplify. 2 π‘₯ 2 =12β‡’ 2 π‘₯ 2 βˆ’12=0 β‡’2 (π‘₯ 2 βˆ’6)=0 β‡’2(π‘₯+ 6 )(π‘₯βˆ’ 6 )=0 As there is no π‘₯ coefficient, we can use the principle that π‘₯ 2 βˆ’ 𝑦 2 = π‘₯+𝑦 π‘₯βˆ’π‘¦ . Note: Never simplify! You should always write π‘Ž as the π‘₯ 2 βˆ’ coefficient. So for the above question the answer is not (π‘₯+ 6 )(π‘₯βˆ’ 6 )=0.

11 No π‘₯βˆ’ coefficient Let’s try one more example. Example
Write 3 π‘₯ 2 =60 in the form π‘Ž π‘₯βˆ’π‘ π‘₯+𝑏 =0 and solve where π‘Žβˆˆβ„€, π‘βˆˆβ„. Do not simplify. 3 π‘₯ 2 =60β‡’ 3 π‘₯ 2 βˆ’60=0 β‡’3 (π‘₯ 2 βˆ’20)=0 β‡’3(π‘₯+ 20 )(π‘₯βˆ’ 20 )=0 β‡’3(π‘₯+2 5 )(π‘₯βˆ’2 5 )=0 β‡’π‘₯=Β±2 5

12 Answers - Top 2 π‘₯βˆ’ 7 π‘₯+ 7 =0 3 π‘₯βˆ’2 2 π‘₯+2 2 =0 π‘₯=Β± 7 4 π‘₯βˆ’ 2 π‘₯+ 2 =0
2 π‘₯βˆ’ 7 π‘₯+ 7 =0 3 π‘₯βˆ’ π‘₯ =0 π‘₯=Β± 7 π‘₯=Β±2 2 4 π‘₯βˆ’ 2 π‘₯+ 2 =0 3 π‘₯βˆ’ π‘₯ =0 π‘₯=Β± 2 π‘₯=Β±3 5 2 π‘₯βˆ’ π‘₯ =0 π‘₯=Β± 24 π‘₯βˆ’ π‘₯ =0 π‘₯=Β±

13 Answers - Bottom 2 π‘₯βˆ’ 6 6 π‘₯+ 6 6 =0 3 π‘₯βˆ’ 6 12 π‘₯+ 6 12 =0 π‘₯=Β± 6 6
2 π‘₯βˆ’ π‘₯ =0 3 π‘₯βˆ’ π‘₯ =0 π‘₯=Β± π‘₯=Β± 5 π‘₯βˆ’ π‘₯ =0 2 π‘₯βˆ’ π‘₯ =0 π‘₯=Β± π‘₯=Β± The solution for π‘₯ would be imaginary.


Download ppt "Solving Quadratic Equations by Factorisation"

Similar presentations


Ads by Google