Download presentation
Presentation is loading. Please wait.
Published byRenáta Kissné Modified over 5 years ago
1
THE DRIVERS OF INTERREGIONAL POLICY CHOICES: EVIDENCE FROM ITALY
Fabio Padovano DIPES, Università Roma Tre, Roma, Italy and CREM-CNRS, Université de Rennes1, Rennes, France.
2
Introduction - 1 New theoretical developments in literature on the determinants of transfers from CG to LG Bailing out expectations (Rodden, 2005; Bordignon & Turati, 2009; Josselin, Padovano and Rocaboy, 2009) Alignment effects (Dasgupta et al., 2002) ‘Too big to fail’ effects (Wildasin, 1997) Asymmetries in representation of local interests in national legislatures (Porto and Sanguinetti, 2001) Common pool situations (Persson and Tabellini, 2001) Soft budget constraints (Quian and Roland, 1998; Goodspeed, 2002)
3
Introduction - 2 …to be added to ‘traditional political determinants’
Political budget cycles Local political capital (Grossman, 1994) Interest groups …and normative welfare economics theories provision of differentiated public goods to heterogeneous populations Common standards in basic services Race to the bottom
4
2 problems Degrees of freedom Institutional detail
Solution to the first panel times series-cross section but: If cross section composed by a variety of countries loose on institutional precision Trade off between problem 1 and 2
5
How NOT to do it Avoiding institutional complexity creates inconsistencies between results (Feld and Schaltegger, CesIFO 2007 vs. Feld and Schaltegger, PC 2005 vs. Feld and Kirchgassner, RSUE 2001) Leviathan hypothesis literature another example (Oates, 1985; Rodden, 2003; Asworth, Galli and Padovano, 2008, 2009) Capturing institutional changes through dummies does not produce very satisfactory empirical specifications (Bordignon and Turati, 2009)
6
Possible solutions Development of theoretical constructs that identify relevant institutional details (e.g. political economy of debt creation) more parsimonious specifications More cross country institutional data in this domain (like DPI) Selection of within country panels Minimize institutional variance Large data set
7
Merits of Italian data set
20 regions 15 RSO and 5 RSS only institutional difference (stable) no major changes in transfer policy No changes of expectations No further institutional change dummy 210 observations data set large enough to account for theoretical innovations Transfer policy historically important Bipartisan policy of progressive substitution of transfers with ‘own resources’ Health care main responsibility of regions (50% of regional expenditures, 70% net of administration) but there is also more worth looking at overall transfers
8
Income per family, Italian Regions 1995-2000 95% confidence intervals, Source: BdI
9
Age structure by Regions - 1
Population density (n/km2) Population by age 0-15 (%) >65 (%) Piedmont 168 12,4 22,4 Valle d'Aosta 37 13,2 20,2 Lombardy 388 13,6 19,4 Trentino Alto Adige 71 16,1 17,7 Veneto 253 13,9 19,2 Friuli Venezia Giulia 153 12 22,6 Liguria 291 11,1 26,5 Emilia Romagna 184 12,5 22,7 Tuscany 155 12,1 23,2 Umbria 100 23,3 Italy 192 14,1 19,7
10
Age structure by regions - 2
Population density (n/km2) Population by age 0-15 (%) > 65 (%) Marche 155 13,1 22,6 Lazio 303 13,9 19,1 Abruzzo 119 13,4 21,3 Molise 72 22 Campania 424 17,5 15,3 Puglia 209 15,7 17,3 Basilicata 60 14,5 19,9 Calabria 133 18,3 Sicily 195 16,2 18 Sardinia 68 12,9 17,6 Italy 192 14,1 19,7
11
Transfers in Italian public sector (% of total expenditures, 2001)
Taxes Soc. Sec. contributions Transfers from Other revenues Deficit (1) (2) (3) (4) (5) (6) Central government (1) 78,3 0,2 0,0 0,5 0,1 10,7 10,2 Social security institutions (2) 70,1 27,4 0,4 2,0 Regions (3) 40,9 53,0 0,3 4,9 0,8 Local Health Units (4) 90,2 Provinces and municipalities (5) 28,5 21,9 13,2 1,3 33,5 1,6 Other public institutions (6) 3,6 52,0 4,7 12,6 3,4 5,1 18,6 -0,2 Duplications 57,7 1,2 0,6 5,5 -0,1
12
Transfers vs. own resources
13
Type of transfers,
14
Model specification Specification Transfers per capita
Total Earmarked to current expenditures Earmarked to capital expenditures As a function of Economic state variables Political variables Demographic indicators Health care variables
15
Economic state variables
+ Ut-1 lagged unemployment - DGDP/POP regional growth differential - GDP/POP income per capita + TRN linear trend, incremental rule (spesa storica) Padovano (2007), Perotti (2001) vs. closing income gap
16
Political variables - 1 + ELN national elections dummy (Grossman, 1994; Rogoff, 1990) + ELR regional elections dummy (Grossman, 1994; Rogoff, 1990) - NDIF vote margin in national elections + RDIF vote margin at regional elections (Cox and McCubbins, 1988) + RDIF, - RDIF2 (Dixit and Londregan, 1994)
17
Political variables - 2 + SAME dummy for alignment effect (Dasgupta et al. 2002) + YEARS lobbying efficiency of region (Olson, 1982) - RIGHT dummy for ideology (Hibbs, 1977, Alesina, 1997)
18
Demographic variables
POP + demand effect, too big to fail effect – economies of scale + POP15 education, social security + POP65 health care, social security
19
Health care variables BED, number of hospital beds × 1000 inhabitants
+ demand induced effect, Niskanen effect - economies of scale (Crivelli et al. 2000) + PUPHY Public sector doctors, demand induced effect, Niskanen effect + PRPHY private sector doctors, demand effect
20
Empirical strategy Model 1: only economic state variables welfare economics explanatory power Model 2: full model, 20 regions Model 3: 15 RSOs Model 4: 5 RSSs Model 5: current transfers Model 6: capital transfers Model 7: sample, check for expectations changes Model 8: political economy vs. welfare economics interpretation of economic state variables
21
Estimates: economic variables
Model 1 2 3 4 5 6 7 8 Sample 20 regions 15 RSOs RSSs Dependent variable TR/POP TRCC/POP TRCK/POP Ut-1 3.121*** (0.303) 4.4644*** (0.38) 3.446*** (0.411) 2.845*** (0.592) 0.539*** (0.072) 4.122*** (0.48) 3.928*** (0.608) DGGDP/POP -1.22*** (0.314) -2.516*** (0.265) -2.69*** (0.472) -1.645 (0.532) -0.895*** (0.089) -2.407*** (0.307) -2.636*** (0.388) GDP/POP (8.259) TREND 0.017** (0.008) 0.038 (0.04) -0.086*** (0.024) 0.006*** (0.002) -0.016** (0.007) 0.02*** C 0.276*** (0.023) -2.349*** (0.326) -0.161 (0.74) -0.377*** (0.07) -2.263*** (0426) -1.865*** (0.408)
22
Estimates: political variables-1
Model 1 2 3 4 5 6 7 8 Sample 20 regions 15 RSOs RSSs Dependent variable TR/POP TRCC/POP TRCK/POP ELN 0.093*** (0.02) 0.103*** (0.025) 0.082*** (0.024) 0.032*** (0.004) 0.069*** (0.015) (0.021) ELR 0.128*** -0.119 (0.207) 0.071 (0.054) 0.02*** (0.007) 0.173*** (0.017) (0.022) YEARS 0.037*** (0.005) -0.027*** (0.041) 0.05*** (0.01) 0.025** (0.012) 0.001 (0.001) 0.043*** 0.039*** (0.006) SAME 0.035** 0.066*** (0.014) 0.058** (0.027) 0.006*** (0.002) 0.023 0.032**
23
Estimates: political variables-2
Model 1 2 3 4 5 6 7 8 Sample 20 regions 15 RSOs RSSs Dependent variable TR/POP TRCC/POP TRCK/POP NDIF -9.806*** (2.2) -23.9* (14.19) *** (2.98) 3.16*** (0.489) -7.971 (1.69) *** *** (2.33) RDIF 1.126*** (0.174) 0.253*** (0.069) 15.928*** (2.16) 0.234*** (0.1) 0.045*** (0.016) 0.64*** (0.155) 1.023*** (0.19) (RDIF)2 -1.372*** (0.393) *** (5.87) -0.459 (0.38) -0.896** RIGHT -0.067*** (0.017) *** ( ) -0.11 (0.03) 0.026*** (0.003) -0.066*** (0.018) -0.066
24
Estimates: demographic controls
Model 1 2 3 4 5 6 7 8 Sample 20 regions 15 RSOs RSSs Dependent variable TR/POP TRCC/POP TRCK/POP POP *** (2-08) *** ( ) *** ( ) ( ) *** ( ) *** (2.68)-08 *** ( ) POP15 5.989*** (1.772) 0.582 (1.843) 1.569 (1.157) 0.236 (0.358) 9.492*** (2.27) 5.405*** (1.756) POP65 7.178*** (0.805) 2.599** (0.856) 28.852*** (11.01) 2.203*** (0.446) 0.707*** (0.19) 7.748*** (0.989) 6.818*** (0.84)
25
Estimates: health care variables
Model 1 2 3 4 5 6 7 8 Sample 20 regions 15 RSOs RSSs Dependent variable TR/POP TRCC/POP TRCK/POP BEDS *** ( ) *** (3.5-06) *** ( ) *** ( ) *** ( ) *** ( ) PUPHY 0.0005** (0.0002) 0.0006*** (0.0001) 0.0003*** (3.7-05) 0.0004** C 0.276*** (0.023) -2.349*** (0.326) -0.161 (0.74) -0.377*** (0.07) -2.263*** (0426) -1.865*** (0.408) AR(1) Yes No Adjusted R2 0.485 0.755 0.849 0.65 0.777 0.878 0.715 S.E.R. 0.374 0.408 0.451 0.16 0.23 0.104 0.409 0.404 F-statistic 50.92*** 25.67*** 30.5*** 47.617*** 17.96 42.75*** 59.86*** 23.405*** Durbin Watson 2.05 1.947 1.85 2.02 1.97 1.78 2.177 1.93 Obs. 210 165 55 150
26
RSOs fixed effects Region Model 3 ABR 7.26 UMB 6.41 MOL 7.06 LOM 6.38
CAL 6.98 ERO 6.31 VEN 6.71 MAR 6.29 CAM 6.67 TOS 6.26 PUG 6.66 PIE 6.25 BAS 6.49 LIG 6.06 LAZ 6.44
27
RSSs fixed effects Region Model 4 SIC -49.86 SAR -19.26 FVG -16.81 TAA
-14.05 VDA -7.19
28
Main results: commentary-1
Inclusion of political, health care and economic variables increases model’s explanatory power by 33% In RSOs electoral process prevails PBC Alignment effect Grants reward local political success (Cox and McCubbins, 1988) National political success lowers grants In RSSs lobbying more important (different party system) Grants targeted to swing regions (Dixit and Londregan, 1994) More resistance to further grants in RSSs
29
Main results: commentary-2
Right wing governments receive less grants in total and for current expenditures (partisan effect) Receive more grants for capital expenditures Health care variables reveal significant induced demand/Niskanen effects No expectations turbulence (but more research is warranted) Political economy explanations of interregional redistribution more supported than standard welfare economics ones
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.