Download presentation
Presentation is loading. Please wait.
Published byHaley Bryer Modified over 10 years ago
1
STABILITY AND TRANSPORT IN TAYLOR-COUETTE FLOW: APPLICATION TO PROTOPLANETARY DISKS
B. DUBRULLE CNRS, Groupe instabilité et Turbulence SPEC/DRECAM/DSM, CEA Saclay O. DAUCHOT CEA Saclay F. DAVIAUD CEA Saclay P-Y LONGARETTI Obs. Grenoble D. RICHARD Obs. Meudon J-P. ZAHN Obs Meudon F. HERSANT Obs. Meudon J-M HURE Obs. Meudon
2
Astrophysical flows Disk/Galaxies Planetary Atmospheres Stars
Navier-Stokes equations: Control parameter:
3
Turbulence Phenomenology
« Cascade » Création of finer and finer structures until dissipation scale Passive scalar Dispersion Passive vector stretching
4
Turbulence Phenomenology
Robust Result: Kolmogorov spectrum Cascade constant dissipation rate Interpretation (Kolmogorov 1941) Energy Cascade L Number of degrees of freedom
5
Example: the sun Giant Convection Dissipation Sunspot cell scale
Granule 0.1 km Too many degrees of freedom! Decimation of degrees (projection)) Paramétrization of decimated degrees
6
Influence of decimated degrees
Typical time at scale l: Decimated degrees (small scales) vary rapidly They can be replaced by noise with short time corrélation Generalized Langevin equation
7
Influence of decimated degrees: transport
Stochastic computation Effective viscosity AKA effect
8
Parametrization: Viscosity
Not necessarily isotropic (cf shear flows) Isotropic case Charactéristic Scale Dimensionnal Characteristic Velocity Constant Kolmogorov theory RANS: Viscosité
9
Example: Mixing length
Convection Fc Radiative Core Hp Inertia Buyoancy = Vc RANS: Viscosité
10
MOTIVATION: PROTOPLANETRAY DISKS
11
DISK OBSERVATIONS Fu Ori Dust Sedimentation Boundary Layer
12
THIN DISK EQUATIONS L R Vertical hydrostatic equilibrium H
Surface averaged quantities Negligible radial pressure gradients H H/R<<1
13
Parametrization: Viscosity
Dimensionnal Charactéristic Scale Characteristic Velocity Constant Other possibility RANS: Viscosité
14
LABORATORY ANALOG Taylor-Couette experiment With porous boundaries
Astrophysical disks
15
POROUS TAYLOR-COUETTE FLOW
Stationary axisymmetric incompressible solutions K, A et B fixed by boundary conditions Non-porous material:
16
Control parameters Traditional choice Physical choice Re Super-
critical Sub- Critical cyclonic Sub- Critical Anti cyclonic Keplerian -4/3 -1
17
Stability: supercritical case
Theoretical results Experimental results Esser and Grossman Small gap (rotating PC):
18
Stability: subcritical
Experimental data Theory None Taylor (1936), Wendt(1933), Richard (2001)
19
Stability: influence of body forces
Experimental results Theoretical results Necessary conditions for stability Dubrulle et al, 2003 Stratification Chandrasekhar-Velikhov Magnetic Whittaker and Chen (1974) Donnelly and Ozima (1962) Anticyclonic flows: unstable!
20
Mean profile: supercritical
Experimental results Theoretical results Busse, 1972 Maximization of transport r Lewis and Swinney, 1999 Flattening of angular momentum
21
Mean profile subcritical
Cyclonic Busse Laminar Busse Anti-cyclonic Busse Evolution vers Busse More rapid for cyclonic Laminar
22
Transport: torque Theoretical results Supercritical: 2 regimes
Dubrulle and Hersant, 2002 Supercritical case Logarithmic corrections Analogy with thermal convection Subcritical: 1 regime Taylor, 1936, Wendt, 1933 Lewis and Swinney, 1999
23
ANALYTICAL PREDICTIONS
Mean flow dominates Fluctuations dominates Low Re
24
TORQUE IN TAYLOR-COUETTE
No adjustable parameter Dubrulle and Hersant, 2002
25
Transport: universality
Relative torque does not depend on gap size, nor Re
26
Transport: influence of BC
Experimental results Theoretical results Dubrulle, 2001 Rough boundaries destroy boundary layer No logarithmic correction Increase of transport with Rough BC Van den Berg et al, 2003
27
Turbulent viscosity Dubrulle et al, 2005
28
Parametrization: Viscosity
In disk: RANS: Viscosité
29
Disk structure: observations
Interferpmetric obs. Inversion via 20 parameter minimization Keplerian model assumed Model with exces IR (Dutrey et al) Classic thin disk Radial structure of disks
30
Reynolds number in protoplanetary disks
31
Stability lines Protoplanetary disks are turbulent!
32
INSTABILITIES- THEORY-Summary
Inviscid stability criterion Critical Reynolds number in protoplanetary disk 3000 1000 Magneto Strato Non-linear Linar
33
COMPARISON EXP/ASTRO flickering fluctuations BPTau Mean dissipation
Statistics
34
ELARGISSEMENT DE RAIES
Dans un disque protoplanetaire Au laboratoire Limite turb/lam
35
TURBULENCE ET FORMATION PLANETAIRE
Turbulence+cisaillement+rotation=tourbillons Concentration locale de densité Freine la migration interne des poussières
36
IMPORTANCE DE LA CYCLONICITE
BRACCO ET AL, 1999 Seuls les anti cyclones survivent dans un écoulement képlerien
37
ARGUMENTS GENERAUX u l Ro>1: la turbulence n’est pas influencée par la rotation Ro<1: la turbulence est modifiée par la turbulence Naivement: la turbulence bi-dimensionalise => ralentit la cascade d’energie vers les petites échelles => favorise l’apparition de structures à longue durée de vie
38
TOURBILLONS Observation avec Hubble Simulation SES (Hersant 2003)
HD A Simulation SES (Hersant 2003)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.