Download presentation
Presentation is loading. Please wait.
1
Introductory Logic PHI 120
Strategies for Solving Complex Problems Introductory Logic PHI 120
2
Homework Proofs Handout: Problem Set A: S1 - S27
Problem Set B: T1 – T4 Problem Set C: S34 - S49 Problem Set D: T5 - T7
3
Homework Proofs Handout: Problem Set A: S1 - S27
Have already assigned all of these! Proofs Handout: Problem Set A: S1 - S27 Problem Set B: T1 – T4 Problem Set C: S34 - S49 Problem Set D: T5 - T7
4
Homework Solve S36 – S38 (Comm) T5* (PMI)
5
Both sites recommended (again)
External Sites Both sites recommended (again) “Proofs without tears” “Proofs with even fewer tears”
6
P <-> Q ⊣⊢ Q <-> P
Mathematical Concepts Commutativity P & Q ⊣⊢ Q & P P v Q ⊣⊢ Q v P P <-> Q ⊣⊢ Q <-> P A simple problem – to highlight strategy
7
P<->Q ⊣⊢ Q<->P
8
P<->Q ⊣⊢ Q<->P
Q <-> P ⊢ P <-> Q
9
P<->Q ⊣⊢ Q<->P
Think <->I (why?) P <-> Q ⊢ Q <-> P (1) P <-> Q A (2) Q <-> P ⊢ P <-> Q Think <->E (why?) Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)
10
P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)
11
P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)
12
P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E (4) ?? Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)
13
P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E (4) ,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)
14
P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E (4) Q <-> P ,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)
15
P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E (4) Q <-> P ,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)
16
P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E 1 (4) Q <-> P ,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)
17
P<->Q ⊣⊢ Q<->P
P <-> Q ⊢ Q <-> P 1 (1) P <-> Q A 1 (2) P -> Q 1 <->E 1 (3) Q -> P 1 <->E 1 (4) Q <-> P 2,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ) Easily solvable IF: You understand <->I You understand <->E
18
T5: ⊢ (P -> Q) v (Q -> P)
Complex Theorem 2 x 2 Question Method T5: ⊢ (P -> Q) v (Q -> P)
19
⊢ (P -> Q) v (Q -> P)
Formulate a strategy!
20
⊢ (P -> Q) v (Q -> P)
1 (1) P A (2) ? Formulate a strategy! Solve for consequent, Q
21
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A (3) ?
22
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1)
23
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI Recognize the problem! Now build the wedge
24
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A Begin RAA Strategy
25
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) Why discharge (2)?
26
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2)
27
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2)
28
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) (nested strategy) Make second disjunct (Q -> P)
29
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) (nested strategy) Make second disjunct (Q -> P)
30
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A (nested strategy) Make second disjunct (Q -> P)
31
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A (nested strategy) Make second disjunct (Q -> P) Use RAA to deny/discharge an assumption
32
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) (nested strategy) Make second disjunct (Q -> P) Use RAA to deny/discharge an assumption
33
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) (nested strategy) Make second disjunct (Q -> P)
34
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) 5 (11) (P -> Q) v (Q -> P) 10 vI (nested strategy) Recognize the problem!
35
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) 5 (11) (P -> Q) v (Q -> P) 10 vI (12) (P -> Q) v (Q -> P) 5,11 RAA(5)
36
⊢ (P -> Q) v (Q -> P)
Why is this complex? The conclusion is a wedge: ⊢ (P -> Q) v (Q -> P) ⊢ (P -> Q) v (Q -> P)
37
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) 5 (11) (P -> Q) v (Q -> P) 10 vI (12) (P -> Q) v (Q -> P) 5,11 RAA(5)
38
⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) 5 (11) (P -> Q) v (Q -> P) 10 vI (12) (P -> Q) v (Q -> P) 5,11 RAA(5)
39
⊢ (P -> Q) v (Q -> P)
Why was this proof difficult? Built the arrow Built the wedge Added problem – too many assumptions! Complex Proofs require nested strategies overlapping strategies proceed step by step ->I vI RAA
40
Homework Solve S36 – S38 (Comm) T5* (PMI)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.