Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introductory Logic PHI 120

Similar presentations


Presentation on theme: "Introductory Logic PHI 120"— Presentation transcript:

1 Introductory Logic PHI 120
Strategies for Solving Complex Problems Introductory Logic PHI 120

2 Homework Proofs Handout: Problem Set A: S1 - S27
Problem Set B: T1 – T4 Problem Set C: S34 - S49 Problem Set D: T5 - T7

3 Homework Proofs Handout: Problem Set A: S1 - S27
Have already assigned all of these! Proofs Handout: Problem Set A: S1 - S27 Problem Set B: T1 – T4 Problem Set C: S34 - S49 Problem Set D: T5 - T7

4 Homework Solve S36 – S38 (Comm) T5* (PMI)

5 Both sites recommended (again)
External Sites Both sites recommended (again) “Proofs without tears” “Proofs with even fewer tears”

6 P <-> Q ⊣⊢ Q <-> P
Mathematical Concepts Commutativity P & Q ⊣⊢ Q & P P v Q ⊣⊢ Q v P P <-> Q ⊣⊢ Q <-> P A simple problem – to highlight strategy

7 P<->Q ⊣⊢ Q<->P

8 P<->Q ⊣⊢ Q<->P
Q <-> P ⊢ P <-> Q

9 P<->Q ⊣⊢ Q<->P
Think <->I (why?) P <-> Q ⊢ Q <-> P (1) P <-> Q A (2) Q <-> P ⊢ P <-> Q Think <->E (why?) Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)

10 P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)

11 P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)

12 P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E (4) ?? Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)

13 P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E (4) ,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)

14 P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E (4) Q <-> P ,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)

15 P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E (4) Q <-> P ,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)

16 P<->Q ⊣⊢ Q<->P
(1) P <-> Q A 1 (2) P -> Q <->E 1 (3) Q -> P <->E 1 (4) Q <-> P ,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ)

17 P<->Q ⊣⊢ Q<->P
P <-> Q ⊢ Q <-> P 1 (1) P <-> Q A 1 (2) P -> Q 1 <->E 1 (3) Q -> P 1 <->E 1 (4) Q <-> P 2,3 <->I Q <-> P ⊢ P <-> Q Φ <-> Ψ is equivalent to (Φ -> Ψ) & (Ψ -> Φ) Easily solvable IF: You understand <->I You understand <->E

18 T5: ⊢ (P -> Q) v (Q -> P)
Complex Theorem 2 x 2 Question Method T5: ⊢ (P -> Q) v (Q -> P)

19 ⊢ (P -> Q) v (Q -> P)
Formulate a strategy!

20 ⊢ (P -> Q) v (Q -> P)
1 (1) P A (2) ? Formulate a strategy! Solve for consequent, Q

21 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A (3) ?

22 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1)

23 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI Recognize the problem! Now build the wedge

24 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A Begin RAA Strategy

25 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) Why discharge (2)?

26 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2)

27 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2)

28 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) (nested strategy) Make second disjunct (Q -> P)

29 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) (nested strategy) Make second disjunct (Q -> P)

30 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A (nested strategy) Make second disjunct (Q -> P)

31 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A (nested strategy) Make second disjunct (Q -> P) Use RAA to deny/discharge an assumption

32 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) (nested strategy) Make second disjunct (Q -> P) Use RAA to deny/discharge an assumption

33 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) (nested strategy) Make second disjunct (Q -> P)

34 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) 5 (11) (P -> Q) v (Q -> P) 10 vI (nested strategy) Recognize the problem!

35 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) 5 (11) (P -> Q) v (Q -> P) 10 vI (12) (P -> Q) v (Q -> P) 5,11 RAA(5)

36 ⊢ (P -> Q) v (Q -> P)
Why is this complex? The conclusion is a wedge: ⊢ (P -> Q) v (Q -> P) ⊢ (P -> Q) v (Q -> P)

37 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) 5 (11) (P -> Q) v (Q -> P) 10 vI (12) (P -> Q) v (Q -> P) 5,11 RAA(5)

38 ⊢ (P -> Q) v (Q -> P)
1 (1) P A 2 (2) Q A 2 (3) P -> Q 2 ->I(1) 2 (4) (P -> Q) v (Q -> P) 3vI 5 (5) ~((P -> Q) v (Q -> P)) A 5 (6) ~Q 4,5 RAA(2) 7 (7) Q A 8 (8) ~P A 5,7 (9) P 6,7 RAA(8) 5 (10) Q -> P 9 ->I(7) 5 (11) (P -> Q) v (Q -> P) 10 vI (12) (P -> Q) v (Q -> P) 5,11 RAA(5)

39 ⊢ (P -> Q) v (Q -> P)
Why was this proof difficult? Built the arrow Built the wedge Added problem – too many assumptions! Complex Proofs require nested strategies overlapping strategies proceed step by step ->I vI RAA

40 Homework Solve S36 – S38 (Comm) T5* (PMI)


Download ppt "Introductory Logic PHI 120"

Similar presentations


Ads by Google