Presentation is loading. Please wait.

Presentation is loading. Please wait.

 = (4/3ħc) n em2  (Nm-Nn) (o-)

Similar presentations


Presentation on theme: " = (4/3ħc) n em2  (Nm-Nn) (o-)"— Presentation transcript:

1  = (4/3ħc) n em2  (Nm-Nn) (o-)
Square of the transition moment n em2 Frequency of the light  Population difference (Nm- Nn) Resonance factor - Dirac delta function (0) = 1

2  = (4/3ħc) n em2  (Nm-Nn) (o-)
(Nm- Nn)

3 I = Ioe-γl Beer’s Law

4 I = Ioe-γl

5 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases

6 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn

7 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn  +ve

8 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn  +ve I < Io Absorption

9

10 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn  +ve I < Io Absorption Nm = Nn

11 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn  +ve I < Io Absorption Nm = Nn  = 0

12 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn  +ve I < Io Absorption Nm = Nn  = 0 I = Io Saturation

13

14 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn  +ve I < Io Absorption Nm = Nn  = 0 I = Io Saturation Nm < Nn

15 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn  +ve I < Io Absorption Nm = Nn  = 0 I = Io Saturation Nm < Nn  -ve

16 I = Ioe-γl  = (4/3ħc) n em2  (Nm-Nn) (o-) 1 2 3 4
Three Cases Nm > Nn  +ve I < Io Absorption Nm = Nn  = 0 I = Io Saturation Nm < Nn  -ve I > Io Stimulated Emission

17

18

19

20

21

22

23

24

25 The maser may switch of after say 3 days so the dimension of the cloud can be estimated from the time for the light wave to pass through the cloud as about 1/100th of a ly and leave the molecules in their lower states. It will take several days to pump up to population inversion again and switch on again Harry Kroto 2004


Download ppt " = (4/3ħc) n em2  (Nm-Nn) (o-)"

Similar presentations


Ads by Google