Download presentation
Presentation is loading. Please wait.
1
Radio-loud quasars in SDSS DR3
WEI-HAO BIAN (1, 2) , YAN-MEI CHEN (1 ), CHEN HU (3, 1), AND JIAN-MIN WANG(1) (1) Key Laboratory for Particle Astrophysics, IHEP (2) Department of Physics, Nanjing Normal University (3) NAOC
2
Outline 1. Background: Lradio, MBH-σ* relation, SDSS 2. Sample
3. Measurements of MBH, σ* 4. MBH-σ* relation for RL and RQ quasars 5. Lradio dependence on MBH, Lbol/LEdd
3
1.Background Origin of L_radio FRI Sy+LINER BLRG PG Q RL Q
Total radio luminosity 409 AGNs (169 S+169 Q+107RG+4 BL ) Xu C, et al., 1999, AJ, 118, 1169 Sikora, et al., astro-ph/ Total L_radio
4
Laor , 2000, ApJ, 543, L111 PG Q Woo & Urry, 2002, ApJ, 581, L5 747 QSOs, 0<z<2.5
5
Ho, L. C. 2002, ApJ, 564, 120 Nuclea L_radio Sikora et al. 2007, astro-ph/ Total L_radio
6
MBH-σ* relation Bian & Zhao, MNRAS, 2004, 347, 607
7
SDSS (1) ugriz, A, 3”, resolution (York et al. 2000) (2)DR3: 1360 sq. deg. (Abazajian et al. 2003) multidimensional SDSS color space. (Richards et al. 2002) (3) 46,420 quasars in SDSS DR3 (Schneider et al. ‘03) Mi < -22 (70, 0.3, 0.7, -0.5) (4) ROSAT, FIRST, NVSS, 2MASS
8
2. RL and RQ Sample FIRST: 20 cm, peak flux density, α=-0.5
Radio loudness: f_5GHz/f_B, rest frame, k correction, R=10 z < 0.83: Hβ, [OIII], N=9573 914 detected by FIRST(598 RL+ 316 RQ), 7846 under flux limit (5721 RQ), 993 not covered by FIRST SDSS spectral fitting => MBH
9
Methods: Galactic extinction: optical. IR Fe II: optical, UV
continuum: power law Balmer continuum Two sets of two-Gaussians: [O III] 4959, 5997 Three-Gaussians for Hβ 4861: NLR contribution
10
EW ([O III]) > 1.5A, σEW/EW<100% (luminosity bias)
RQ Total sample: 3466 RL sample: 306 with R, L_radio RQ sample: 181 with R, L_radio
11
3. MBH,σ* f=0.75
12
4. MBH-σrelation for RL+RQ QSOs
bad relation RQ,RL Uncertainties 0.5 dex 0.2 dex optical continuum beaming effect orientation of BLRs. Rc0.1
14
Luminosity bias: Monte Carlo trials
Mgal(i) MBH(i,j) L(i,j,k) Galaxy mass function QSOs luminosity function (Boyle et al., 2000) (1)For samples, for different redshift bins, mean luminosity; (2)Form QSOs luminosity function, choose L_cut, to make the mean luminosity of the kept QSOs (L > L_cut ) equal to the observed mean luminosity in different redshift bin.
16
5.Lradio – Lbol/LEdd+MBH
Lacy, 2001, ApJ, 551, L17
17
Some comments Radio luminosity: total/nuclear, FSQ,SSQ, FRI, FRII, BLRG, lobe-dominated QSOs High z radio-quiet QSOs, radio-loud QSOs Morphology difference: spiral RL, ellip RQ? radio loud AGNs with larger SMBH, small SMBH? NLS1s? Intermediate black hole? Optical-select, radio-slect, X-select samples ?? complete sample! Origins of L_radio, L_x, L_opt , jet, corona, ADAF, AD, AGN or starburst? FRI: Torus? infrared Bimodality of radio loudness: sample, z, M_BH, metal
18
Thank you
20
6. Lradio – Lx+MBH
21
Wang et al., 2006, ApJ, 645, 890 Weak dependence on M_BH Gallo et al., 2003, MNRAS, 344, 60 Index: 0.7
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.