Download presentation
Presentation is loading. Please wait.
1
Linear Function in Coordinate System
Hung-yi Lee
2
Outline Describing a function in a coordinate system
A complex function in one coordinate system can be simple in other systems. Reference: Textbook Chapter 4.5 Why we have to do that?
3
Basic Idea Simple Function Another coordinate system output’ Input’
Why we have to do that? Cartesian coordinate system Input Output Complex Function
4
Sometimes a function can be complex ……
Example: reflection about a line L through the origin in R2 𝑥 1 𝑥 2 𝑇 𝑥 1 𝑥 2 =? T = 𝑇 𝑒 1 𝑇 𝑒 2 =? 𝑇 𝑥 1 𝑥 2
5
Sometimes a function can be complex ……
Example: reflection about a line L through the origin in R2 special case: L is the horizontal axis 𝑇′ 𝑥 1 𝑥 2 =? 𝑥 1 −𝑥 2 𝑥 1 𝑥 2 A similar but simpler function 𝑇′ = −1 𝑇′ 𝑥 1 𝑥 2 𝑇′ 𝑒 1 𝑇′ 𝑒 2 = 𝑒 1 =− 𝑒 2
6
Describing the function in another coordinate system
Example: reflection about a line L through the origin in R2 In another coordinate system B …. B = 𝑏 1 , 𝑏 2 𝑇 𝑏 2 =− 𝑏 2 𝑏 2 𝑏 1 𝑇 𝑏 1 = 𝑏 1
7
Describing the function in another coordinate system
Example: reflection about a line L through the origin in R2 = −1 𝑇 B In another coordinate system B …. Input and output are both in B 𝑇 𝑏 1 = 𝑏 1 𝑏 2 B = 𝑒 2 T 下標 B 上標 gamma 𝑇 B 𝑏 1 B = 𝑏 1 B 𝑇 B 𝑒 1 = 𝑒 1 𝑇 𝑏 2 =− 𝑏 2 𝑏 1 B = 𝑒 1 𝑇 B 𝑏 2 B = − 𝑏 2 B 𝑇 B 𝑒 2 =− 𝑒 2
8
Flowchart 𝑣 B 𝑇 𝑣 B 𝑣 𝑇 𝑣 = 1 0 0 −1 𝑇 B 𝑇 =? (B matrix of T) 𝑏 1 𝑏 2
= −1 𝑇 B (B matrix of T) 𝑣 B 𝑇 𝑣 B 𝑏 1 𝑏 2 reflection about the horizontal line 𝑒 1 𝑒 2 𝑇 =? 𝑣 𝑇 𝑣 reflection about a line L
9
𝑣 B 𝑇 𝑣 B 𝐵 𝐵 −1 𝑣 𝑇 𝑣 𝐴=𝐵 𝑇 B 𝐵 −1 𝑇 B = 𝐵 −1 A𝐵 Flowchart 𝑇 B 𝑇 =?
B coordinate system 𝐵 𝐵 −1 Cartesian coordinate system 𝑇 =? 𝑣 𝑇 𝑣 𝐴=𝐵 𝑇 B 𝐵 −1 𝑇 B = 𝐵 −1 A𝐵 similar similar
10
Example: reflection operator T about the line y = (1/2)x
𝐵 −1 = − 𝐵= 2 −1 1 2 𝑏 2 = −1 2 y = (1/2)x 𝑇 B 𝑣 B 𝑇 𝑣 B 𝑏 1 = 2 1 1 0 0 −1 𝐵 −1 𝐵 y = (1/2)x 𝑒 2 = 0 1 𝐴=? 𝑣 𝑇 𝑣 𝑒 1 = 1 0 𝐴=𝐵 𝑇 B 𝐵 −1
11
Example: reflection operator T about the line y = (1/2)x
𝐵 −1 = − 𝐵= 2 −1 1 2 −0.6 𝐴= 𝑇 B 𝑣 B 𝑇 𝑣 B y = (1/2)x 𝑐 2 = −0.5 1 1 0 0 −1 𝐵 −1 𝑐 1 = 4 2 𝐵 𝐴=? 𝐴=𝐶 𝑇 C 𝐶 −1 𝑣 𝑇 𝑣 = −0.6 𝐴=𝐵 𝑇 B 𝐵 −1
12
Example 2 (P279) 𝑇 B =? 𝑣 B 𝐴= 3 0 1 1 1 0 −1 −1 3 𝑇 𝑣 B 𝑇 B = 𝐵 −1 𝐴𝐵
𝐴= −1 −1 3 𝑇 𝑣 B 𝑇 B = 𝐵 −1 𝐴𝐵 𝐵= 𝐵 −1 𝐵 𝐴 is known 3 −9 8 −1 3 − 𝑣 𝑇 B = 𝑇 𝑣 𝐴=𝐵 𝑇 B 𝐵 −1
13
Example 3 (P279) Determine T b1 c1 b2 c2 b3 c3 e1 e2 e3 𝑣 B 𝑇 𝑣 B
b1, b2, b3 as a coordinate system 𝐵 −1 𝐵 −1 {b1, b2, b3} is a basis of R3 Simple ….. A = C B ^ -1 𝐴 b1 b2 b3 𝑣 𝑇 𝑣 c1 c2 c3
14
Example 3 (P279) Determine T 𝑇 B = 𝐵 −1 𝑐 1 𝐵 −1 𝑐 2 𝐵 −1 𝑐 3 = 𝐵 −1 𝐶
= 𝐵𝐵 −1 𝐶 𝐵 −1 =𝐶 𝐵 −1 e1 e2 e3 𝑣 B 𝑇 𝑣 B B-1c1 B-1c2 B-1c3 𝑇 B b1, b2, b3 as a coordinate system 𝐵 −1 𝐵 −1 𝐵 {b1, b2, b3} is a basis of R3 𝐴 b1 b2 b3 𝑣 𝑇 𝑣 c1 c2 c3
15
Cartesian coordinate system
Inception 小開的父親說: "I'm disappointed that you're trying so hard to be me." 小開有了不要繼承父業的念頭 𝑇 B B coordinate system 𝑣 B 𝑇 𝑣 B 𝑇 B = 𝐵 −1 𝐴𝐵 夢境 𝐵 清醒 Cartesian coordinate system 做夢 𝐵 −1 𝑇 𝑣 𝑇 𝑣 現實 𝑇 =𝐵 𝑇 B 𝐵 −1 小開解散公司 說服小開解散公司
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.