Download presentation
Presentation is loading. Please wait.
1
ANOVA: Analysis of Variance
2
An ANOVA situation Subjects: 25 patients with blisters
Treatments: Treatment A, Treatment B, Placebo (randomly assigned) Measurement: # of days until blisters heal Data [and means]: A: 5,6,6,7,7,8,9, [7.25] B: 7,7,8,9,9,10,10, [8.875] P: 7,9,9,10,10,10,11,12,13 [10.11] Are these differences in the means significant?
3
H0: The means of all the groups are equal.
What does ANOVA do? At its simplest (there are extensions) ANOVA tests the following hypotheses: H0: The means of all the groups are equal. Ha: Not all the means are equal Doesn’t say how or which ones differ. Can follow up with “multiple comparisons”
4
Standard deviations of each group are approximately equal
Conditions of ANOVA Random Normal/Large Sample Standard deviations of each group are approximately equal Rule of thumb: ratio of largest to smallest sample st. dev. must be less than 2:1 (largest sd/ smallest sd < 2)
5
Normality Check
6
Standard Deviation Check
Variable treatment N Mean Median StDev days A B P Compare largest and smallest standard deviations: largest: 1.764 smallest: 1.458 1.764/1.458 = 1.21 < 2
7
How ANOVA works (outline)
ANOVA measures two sources of variation in the data and compares their relative sizes variation BETWEEN groups for each data value look at the difference between its group mean and the overall mean variation WITHIN groups for each data value we look at the difference between that value and the mean of its group
8
The ANOVA F-statistic is a ratio of the Between Group Variation divided by the Within Group Variation: A large F is evidence against H0, since it indicates that there is more difference between groups than within groups.
10
Degrees of Freedom The between group df (numerator) is one less than the number of groups We have three groups, so df(numerator) = 3 – 1 = 2 The within group df is the sum of the individual df’s of each group or Total number of observations – number of groups The sample sizes are 8, 8, and 9 df(denominator) = = 22 or 25 – 3 = 22
11
Our Data Variable treatment N Mean Median StDev
days A B P
12
Calculations 1. Calculate the overall mean for our data.
2. Calculate MSG Calculate MSE 4. Calculate the F-statistic. F = MSG MSE
13
Minitab ANOVA Output Analysis of Variance for days Source DF SS MS F P
treatment Error Total
14
So How big is F? Mean Square Between / Mean Square Within = MSG / MSE
Since F is Mean Square Between / Mean Square Within = MSG / MSE A large value of F indicates relatively more difference between groups than within groups (evidence against H0) To get the P-value, we will need to use the F-distribution. Be thankful for technology!!!
15
Our Original Situation
Subjects: 25 patients with blisters Treatments: Treatment A, Treatment B, Placebo (randomly assigned) Measurement: # of days until blisters heal Data [and means]: A: 5,6,6,7,7,8,9,10 B: 7,7,8,9,9,10,10,11 P: 7,9,9,10,10,10,11,12,13 Put each treatment into a list. Run an ANOVA test on your calculator.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.