Presentation is loading. Please wait.

Presentation is loading. Please wait.

Light regulation of Plant Development

Similar presentations


Presentation on theme: "Light regulation of Plant Development"— Presentation transcript:

1 Light regulation of Plant Development
Plants use light as food and information Use information to control development

2 Light regulation of Plant Development
Germination Morphogenesis Sun/shade & shade avoidance Flowering Senescence

3 Light regulation of growth
Plants sense Light quantity Light quality (colors) Light duration Direction it comes from Have photoreceptors that sense specific wavelengths

4 Light regulation of growth
Early work: Darwin showed that phototropism is controlled by blue light

5 Light regulation of growth
Duration = photoperiodism (Garner and Allard,1920) Maryland Mammoth tobacco flowers in the S but not in N = short-day plant (SDP) Measures night! 30" flashes during night stop flowers LDP plants such as Arabidopsis need long days to flower SDP flower in fall, LDP flower in spring, neutral flower when ready

6 Light regulation of growth
Measures night! 30" flashes during night stop flowers LDP plants such as Arabidopsis need long days to flower SDP flower in fall, LDP flower in spring, neutral flower when ready Next : color matters! Red light works best for flowering

7 Light regulation of growth
Next : color matters! Red light (666 nm)works best for flowering & for germination of many seeds!

8 Phytochrome But, Darwin showed blue works best for phototropism! Different photoreceptor! Red light (666 nm) promotes germination Far red light (>700 nm) blocks germination

9 Phytochrome Red light (666 nm) promotes germination Far red light (>700 nm) blocks germination After alternate R/FR color of final flash decides outcome Seeds don't want to germinate in the shade! Pigment is photoreversible

10 Phytochrome Red light (666 nm) promotes germination Far red light (730 nm) blocks germination After alternate R/FR color of final flash decides outcome Pigment is photoreversible! -> helped purify it! Looked for pigment that absorbs first at 666 nm, then 730

11 Phytochrome Made as inactive cytoplasmic Pr that absorbs at 666 nm or in blue Converts to active Pfr that absorbs far red (730nm)

12 Phytochrome Made as inactive cytoplasmic Pr that absorbs at 666 nm or in blue Converts to active Pfr that absorbs far red (730nm) 97% of Pfr is converted back to Pr by far red light Also slowly reverts in dark: how plants sense night length

13 Types of Phytochrome Responses
Two categories based on speed Rapid biochemical events Morphological changes

14 Types of Phytochrome Responses
Two categories based on speed Rapid biochemical events Morphological changes Lag time also varies from minutes to weeks: numbers of steps after Pfr vary "Escape time" until a response can no longer be reversed by FR also varies

15 Types of Phytochrome Responses
Two categories based on speed 3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2

16 Types of Phytochrome Responses
Two categories based on speed 3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 Changes 0.02% of Pr to Pfr

17 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 Changes 0.02% of Pr to Pfr Are not FR-reversible!

18 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 Changes 0.02% of Pr to Pfr Are not FR-reversible! But action spectrum same as Pr

19 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 Changes 0.02% of Pr to Pfr Are not FR-reversible! But action spectrum same as Pr Induced by FR!

20 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 Changes 0.02% of Pr to Pfr Are not FR-reversible! But action spectrum same as Pr Induced by FR! Obey law of reciprocity: 1 nmol/m-2 x 100 s = 100 nmol/m-2 x 1 sec

21 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 Changes 0.02% of Pr to Pfr Are not FR-reversible! But action spectrum same as Pr Induced by FR! Obey law of reciprocity: 1 nmol/m-2 x 100 s = 100 nmol/m-2 x 1 sec Examples: Cab gene induction, oat coleoptile growth

22 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 Changes 0.02% of Pr to Pfr Are not FR-reversible! But action spectrum same as Pr Induced by FR! Obey law of reciprocity: 1 nmol/m-2 x 100 s = 100 nmol/m-2 x 1 sec Examples: Cab gene induction, oat coleoptile growth 2. LF: induced by 1 µmol/m-2, 1000 µmol/m-2

23 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 Are FR-reversible!

24 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 Are FR-reversible! Need > 3% Pfr

25 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 Are FR-reversible! Need > 3% Pfr Obey law of reciprocity

26 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 Are FR-reversible! Need > 3% Pfr Obey law of reciprocity Examples : Lettuce seed germination, mustard photomorphogenesis, inhibits flowering in SDP

27 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 Are FR-reversible! Need > 3% Pfr Obey law of reciprocity Examples : Lettuce seed Germination, mustard photomorphogenesis, inhibits flowering in SDP 3. HIR: require prolonged exposure to higher fluence

28 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 3. HIR: require prolonged exposure to higher fluence Effect is proportional to fluence

29 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 3. HIR: require prolonged exposure to higher fluence Effect is proportional to fluence Disobey law of reciprocity Are not FR-reversible!

30 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 3. HIR: require prolonged exposure to higher fluence Effect is proportional to fluence Disobey law of reciprocity Are not FR-reversible! Some are induced by FR!

31 Types of Phytochrome Responses
3. HIR: require prolonged exposure to higher fluence Effect is proportional to fluence Disobey law of reciprocity Are not FR-reversible! Some are induced by FR! Examples: inhibition of hypocotyl elongation in many seedlings, Anthocyanin synthesis

32 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 3. HIR: require prolonged exposure to higher fluence Different responses = Different phytochromes

33 Types of Phytochrome Responses
3 classes based on fluence (amount of light needed) VLF:induced by 0.1 nmol/m-2 , 50nmol/m-2 2. LF: induced by 1 µmol/m-2, µmol/m-2 3. HIR: require prolonged exposure to higher fluence Different responses = Different phytochromes: 3 in rice, 5 in Arabidopsis

34 Types of Phytochrome Responses
Different responses = Different phytochromes: 3 in rice, 5 in Arabidopsis PHYA mediates VLF and HIR due to FR

35 Types of Phytochrome Responses
Different responses = Different phytochromes: 3 in rice, 5 in Arabidopsis PHYA mediates VLF and HIR due to FR Very labile in light

36 Types of Phytochrome Responses
Different responses = Different phytochromes: 3 in rice, 5 in Arabidopsis PHYA mediates VLF and HIR due to FR Very labile in light 2. PHYB mediates LF and HIR due to R Stable in light

37 Types of Phytochrome Responses
PHYA mediates VLF and HIR due to FR Very labile in light 2. PHYB mediates LF and HIR due to R Stable in light 3. Roles of PHYs C, D & E not so clear

38 Types of Phytochrome Responses
PHYA mediates VLF and HIR due to FR Very labile in light 2. PHYB mediates LF and HIR due to R Stable in light 3. Roles of PHYs C, D & E not so clear PHYA & PHYB are often antagonistic.

39 Types of Phytochrome Responses
PHYA & PHYB are often antagonistic. In sunlight PHYB mainly controls development

40 Types of Phytochrome Responses
PHYA & PHYB are often antagonistic. In sunlight PHYB mainly controls development In shade PHYA 1st controls development, since FR is high

41 Types of Phytochrome Responses
PHYA & PHYB are often antagonistic. In sunlight PHYB mainly controls development In shade PHYA 1st controls development, since FR is high But PHYA is light-labile; PHYB takes over & stem grows "shade-avoidance"

42 Phytochrome Pr has cis-chromophore

43 Phytochrome Pr has cis-chromophore Red converts it to trans = active shape

44 Phytochrome Pr has cis-chromophore Red converts it to trans = active shape Far-red reverts it to cis

45 Phytochrome Pfr is a protein kinase: acts by kinasing key proteins some stays in cytoplasm & activates ion pumps

46 Phytochrome Pfr is a protein kinase: acts by kinasing key proteins some stays in cytoplasm & activates ion pumps Rapid responses are due to changes in ion fluxes

47 Phytochrome Pfr is a protein kinase: acts by kinasing key proteins some stays in cytoplasm & activates ion pumps Rapid responses are due to changes in ion fluxes Increase growth by activating PM H+ pump

48 Phytochrome Pfr is a protein kinase: acts by kinasing key proteins some stay in cytoplasm & activate ion pumps Rapid responses are due to changes in ion fluxes most enter nucleus and kinase transcription factors

49 Phytochrome some stay in cytoplasm & activate ion pumps Rapid responses are due to changes in ion fluxes most enter nucleus and kinase transcription factors Slow responses are due to changes in gene expression

50 Phytochrome most enter nucleus and kinase transcription factors Slow responses are due to changes in gene expression Many targets of PHY are transcription factors, eg PIF3

51 Phytochrome most enter nucleus and kinase transcription factors Slow responses are due to changes in gene expression Many targets of PHY are transcription factors, eg PIF3 Activate cascades of genes for photomorphogenesis

52 Phytochrome Slow responses are due to changes in gene expression Many targets of PHY are transcription factors, eg PIF3 Activate cascades of genes for light responses Some overlap, and some are unique to each phy

53 Phytochrome Slow responses are due to changes in gene expression Many targets of PHY are transcription factors, eg PIF3 Activate cascades of genes for light responses Some overlap, and some are unique to each phy 20% of genes are light-regulated

54 Phytochrome 20% of genes are light-regulated Protein degradation is important for light regulation

55 Phytochrome 20% of plant genes are light-regulated Protein degradation is important for light regulation Cop mutants can’t degrade specific proteins

56 Phytochrome Protein degradation is important for light regulation Cop mutants can’t degrade specific proteins COP1/SPA targets specific transcription factors for degradation

57 Phytochrome Protein degradation is important for light regulation Cop mutants can’t degrade specific proteins COP1/SPA targets specific TF for degradation DDA1/DET1/COP10 target other proteins for degradation

58 Phytochrome Protein degradation is important for light regulation Cop mutants can’t degrade specific proteins COP1/SPA targets specific TF for degradation DDA1/DET1/COP10 target other proteins for degradation Other COPs form part of COP9 signalosome

59 Phytochrome Protein degradation is important for light regulation Cop mutants can’t degrade specific proteins COP1/SPA targets specific TF for degradation DDA1/DET1/COP10 target other proteins Other COPs form part of COP9 signalosome W/O COPs these TF act in dark

60 Phytochrome COPs target specific TF for degradation W/O COPs they act in dark In light COP1 is exported to cytoplasm so TF can act Tags PHYA by itself on the way out!

61 Other Phytochrome Responses
In shade avoidance FR stimulates IAA synthesis from trp! Occurs in < 1 hour

62 Other Phytochrome Responses
In shade avoidance FR stimulates IAA synthesis from trp! Occurs in < 1 hour Also occurs in response to endogenous ethylene!

63 Other Phytochrome Responses
Flowering under short days is controlled via protein deg COP & CUL4 mutants flower early

64 Other Phytochrome Responses
Flowering under short days is controlled via protein deg COP & CUL4 mutants flower early Accumulate FT (Flowering locus T) mRNA early FT mRNA abundance shows strong circadian rhythm

65 Other Phytochrome Responses
Circadian rhythms Many plant responses, some developmental, some physiological, show circadian rhythms

66 Circadian rhythms Many plant responses, some developmental, some physiological, show circadian rhythms Leaves move due to circadian ion fluxes in/out of dorsal & ventral motor cells


Download ppt "Light regulation of Plant Development"

Similar presentations


Ads by Google