Download presentation
Presentation is loading. Please wait.
1
Proteomics Informatics David Fenyő
2
Course Information
3
Protein Identification and Quantitation
Samples Peptides Mass Spectrometry Quantity intensity m/z Identity
4
Central Dogma of Molecular Biology
Transcription Replication Translation Modification P
5
Central Dogma of Molecular Biology
Transcription Replication Translation Modification Functional Gene Products P
6
Central Dogma of Molecular Biology
Transcription Replication Easy to measure Translation Modification P Difficult to measure
7
Central Dogma of Molecular Biology
Transcription Replication Slow Translation Fast Modification P
8
X X Central Dogma of Molecular Biology P Transcription Replication
Degradation Translation X Degradation Modification P X
9
ERBB2 Central Dogma of Molecular Biology Breast Cancer P Transcription
RNA Transcription DNA Translation Modification P
10
ERBB2 Central Dogma of Molecular Biology Breast Cancer P Transcription
RNA Transcription DNA Translation Modification P
11
ERBB2 Central Dogma of Molecular Biology Breast Cancer P Transcription
RNA Transcription DNA Translation Modification P
12
ERBB2 Central Dogma of Molecular Biology Breast Cancer Ovarian Cancer
RNA RNA Transcription DNA DNA Ovarian Cancer Translation Modification P
13
KRT5 Central Dogma of Molecular Biology Breast Ovarian Colon Cancer
Transcription Translation Modification P
14
Copy Number / Transcript Protein / Phosphoprotein
Correlations between copy number, transcript, protein and phosphoprotein quantities ~ ~ ~ Copy Number / Transcript Transcript / Protein Protein / Phosphoprotein 1.0 0.8 0.5 0.5 Correlation 0.2 0.0 -0.5
15
Correlations between different genes
Breast Cancer GRB7 Transcription ERBB2 GRB7 Translation ERBB2 Modification GRB7 P ERBB2
16
Correlations between different genes
Breast Cancer GRB7 ERBB4 Transcription ERBB2 ERBB2 GRB7 ERBB4 Translation ERBB2 ERBB2 Modification GRB7 ERBB4 P ERBB2 ERBB2
17
Protein-Protein Correlations: Both Positive and Negative
Breast Cancer
18
Motivating Example: Protein Complexes
Alber et al., Nature 2007
19
Motivating Example: Signaling
Choudhary & Mann, Nature Reviews Molecular Cell Biology 2010
20
Identified and Quantified Proteins
Mass Spectrometry Based Proteomics Lysis Fractionation Digestion Mass spectrometry Peak Finding Charge determination De-isotoping Integrating Peaks Searching MS Identified and Quantified Proteins
21
Ion Source Mass Analyzer Detector Mass Spectrometry intensity
mass/charge
22
y b Mass Spectrometry Mass Analyzer 1 Frag-mentation Detector
Ion Source Mass Analyzer 2 y b
23
Example data – ESI-LC-MS/MS
m/z m/z % Relative Abundance 100 250 500 750 1000 [M+2H]2+ 762 260 389 504 633 875 292 405 534 907 1020 663 778 1080 1022 MS/MS Time
24
Information Content in a Single Mass Measurement
Human 10 8 6 Avg. #of matching peptides 4 3 2 1 #of matching peptides Tryptic peptide mass [Da] S. cerevisiae 10 8 6 Avg. #of matching peptides 4 3 2 1 #of matching peptides Tryptic peptide mass [Da]
25
Compare, score, test significance Identified peptides and proteins
Protein Identification by Mass Spectrometry Samples Peptides MS/MS Protein DB Compare, score, test significance Identified peptides and proteins
26
Repeat for all proteins Compare, Score, Test Significance
Tandem MS – Database Search Sequence DB Lysis Fractionation Pick Protein Digestion LC-MS Pick Peptide Repeat for all proteins MS/MS All Fragment Masses all peptides Repeat for MS/MS Compare, Score, Test Significance
27
Search Results
28
Search Results Most proteins show very reproducible peptide patterns
29
Search Results
30
Compare, Score, Test Significance
Spectrum Library Search Spectrum Library Lysis Fractionation Digestion LC-MS/MS Pick Spectrum all spectra Repeat for MS/MS Compare, Score, Test Significance Identified Proteins
31
Interpretation of Mass Spectra
K L E D F G S m/z % Relative Abundance 100 250 500 750 1000
32
Interpretation of Mass Spectra
K L E D F G S K 1166 L 1020 E 907 D 778 663 534 405 F 292 G 145 S 88 b ions m/z % Relative Abundance 100 250 500 750 1000
33
Interpretation of Mass Spectra
K L E D F G S 147 K 1166 L 260 1020 E 389 907 D 504 778 633 663 762 534 875 405 F 1022 292 G 1080 145 S 88 y ions b ions m/z % Relative Abundance 100 250 500 750 1000
34
Interpretation of Mass Spectra
K L E D F G S 147 K 1166 L 260 1020 E 389 907 D 504 778 633 663 762 534 875 405 F 1022 292 G 1080 145 S 88 y ions b ions m/z % Relative Abundance 100 250 500 750 1000 [M+2H]2+ 762 260 389 504 633 875 292 405 534 907 1020 663 778 1080 1022
35
Interpretation of Mass Spectra
K L E D F G S 147 K 1166 L 260 1020 E 389 907 D 504 778 633 663 762 534 875 405 F 1022 292 G 1080 145 S 88 y ions b ions m/z % Relative Abundance 100 250 500 750 1000 [M+2H]2+ 762 260 389 504 633 875 292 405 534 907 1020 663 778 1080 1022
36
Interpretation of Mass Spectra
K L E D F G S 147 K 1166 L 260 1020 E 389 907 D 504 778 633 663 762 534 875 405 F 1022 292 G 1080 145 S 88 y ions b ions m/z % Relative Abundance 100 250 500 750 1000 [M+2H]2+ 762 260 389 504 633 875 292 405 534 907 1020 663 778 1080 1022 113 113
37
Interpretation of Mass Spectra
K L E D F G S 147 K 1166 L 260 1020 E 389 907 D 504 778 633 663 762 534 875 405 F 1022 292 G 1080 145 S 88 y ions b ions m/z % Relative Abundance 100 250 500 750 1000 [M+2H]2+ 762 260 389 504 633 875 292 405 534 907 1020 663 778 1080 1022 129 129
38
Interpretation of Mass Spectra
K L E D F G S 147 K 1166 L 260 1020 E 389 907 D 504 778 633 663 762 534 875 405 F 1022 292 G 1080 145 S 88 y ions b ions m/z % Relative Abundance 100 250 500 750 1000 [M+2H]2+ 762 260 389 504 633 875 292 405 534 907 1020 663 778 1080 1022
39
Interpretation of Mass Spectra
K L E D F G S 147 K 1166 L 260 1020 E 389 907 D 504 778 633 663 762 534 875 405 F 1022 292 G 1080 145 S 88 y ions b ions m/z % Relative Abundance 100 250 500 750 1000 [M+2H]2+ 762 260 389 504 633 875 292 405 534 907 1020 663 778 1080 1022
40
Interpretation of Mass Spectra
K L E D F G S 147 K 1166 L 260 1020 E 389 907 D 504 778 633 663 762 534 875 405 F 1022 292 G 1080 145 S 88 y ions b ions m/z % Relative Abundance 100 250 500 750 1000 [M+2H]2+ 762 260 389 504 633 875 292 405 534 907 1020 663 778 1080 1022
41
De Novo Sequencing Sequences consistent with spectrum
Amino acid masses 762 100 875 [M+2H]2+ % Relative Abundance 633 292 405 260 389 534 1022 504 663 778 907 1020 1080 250 500 750 1000 m/z Mass Differences Sequences consistent with spectrum
42
Significance Testing False protein identification is caused by random matching An objective criterion for testing the significance of protein identification results is necessary. The significance of protein identifications can be tested once the distribution of scores for false results is known.
43
C I Protein Quantitation by Mass Spectrometry Sample i Protein j Lysis
ij Protein j Lysis Peptide k Fractionation Digestion MS I LC - MS ik
44
Protein Quantitation by Mass Spectrometry
45
Protein Quantitation by Mass Spectrometry
46
Protein Quantitation by Mass Spectrometry
47
Protein Quantitation by Mass Spectrometry
Light Heavy Lysis Assumption: All losses after mixing are identical for the heavy and light isotopes and Fractionation Digestion Sample i Protein j Peptide k LC-MS MS H L Oda et al. PNAS 96 (1999) 6591 Ong et al. MCP 1 (2002) 376
48
Protein Quantitation MS MS MS/MS MS/MS LC-MS Digestion Fractionation
Shotgun proteomics LC-MS Targeted MS 1. Records M/Z 1. Select precursor ion MS MS Digestion 2. Selects peptides based on abundance and fragments Fractionation 2. Precursor fragmentation MS/MS MS/MS Lysis 3. Protein database search for peptide identification 3. Use Precursor-Fragment pairs for identification Data Dependent Acquisition (DDA) Uses predefined set of peptides
50
Compare, score, test significance Identified peptides and proteins
Protein Identification by Mass Spectrometry Samples Peptides MS/MS Protein DB Compare, score, test significance Identified peptides and proteins
51
Tumor Specific Databases
Next-generation sequencing of the genome and transcriptome Samples Peptides MS/MS Sample-specific Protein DB Compare, score, test significance Identified peptides and proteins
52
Proteogenomics Non-Tumor Sample Genome sequencing
Identify germline variants Genome sequencing RNA-Seq Tumor Sample Identify alternative splicing, somatic variants and novel expression TCGAGAGCTG TCGATAGCTG Exon 1 Exon 2 Exon 3 Variants Alt. Splicing Novel Expression Exon X Fusion Genes Gene X Gene Y Tumor Specific Protein DB Reference Human Database (Ensembl)
53
Posttranslational Modifications
Peptide with two possible modification sites Matching MS/MS spectrum Intensity m/z Which assignment does the data support? 1, or 2, or 1 and 2?
54
Protein Interactions Digestion Mass spectrometry Identification E F A
B Digestion Mass spectrometry Identification
55
Data Analysis - Normalization
Normalized: mean=0, std=1 Raw Data
56
Data Analysis - Normalization
Normalized 3 replicates Normalized 3 replicates + one more replicate a few months later
57
Data Analysis
58
FDA calls them “in vitro diagnostic multivariate assays”
Molecular Markers A molecular signature is a computational or mathematical model that links high-dimensional molecular information to phenotype or other response variable of interest. FDA calls them “in vitro diagnostic multivariate assays”
59
Mass Spectrometry–Based Proteomics and Network Biology
A. Bensimon, A.J.R. Heck R. Aebersold, "Mass Spectrometry–Based Proteomics and Network Biology", Annual Review of Biochemistry 81 (2012)
60
Spatial proteomics: a powerful discovery tool for cell biology
Lundberg E, Borner GHH. Spatial proteomics: a powerful discovery tool for cell biology. Nat Rev Mol Cell Biol. 2019
61
Spatial proteomics: a powerful discovery tool for cell biology
Lundberg E, Borner GHH. Spatial proteomics: a powerful discovery tool for cell biology. Nat Rev Mol Cell Biol. 2019
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.