Download presentation
Presentation is loading. Please wait.
Published byJean-Louis Lacroix Modified over 5 years ago
1
沈彩万 Two-step Model in the synthesis of superheavy elements 浙江 · 湖州师范学院
第十三届全国核结构研讨会 · 赤峰 2010年7月27日
2
Collaborators Y. Abe (RCNP, Japan) D. Boilley (GANIL, France)
E. G. Zhao (ITP, CAS) G. Kosenko (Omsk Univ., Russia)
3
Outlook Introduction Fusion hindrance
Two-step model in the fusion: Sticking process Formation process Calculations Conclusion
4
Compound Nucleus Theory
Commonly used model: Compound Nucleus Theory
5
Sketch map of the process
Binary Processes (DIC) Reseparation (Quasi-Fission) C. N. SHE Spontaneous decays (a, fission) n
6
Parameters for the description of formation
q1 = R/R q2 = a p1 = pR/R p2 = pa a: asymmetric parameter, R0: spherical radius of the compound nucleus
7
100Mo+100Mo
8
110Pd + 110Pd
9
Average value of the neck parameter
10
After equilibrium, the distribution probability of e :
数值计算 For fixed a and R/R0, After equilibrium, the distribution probability of e : Approximately: where:
11
(F.H) (no F.H.) Criteria for fusion hindrance in radial evolution
If system evolves to spherical case: without fusion hindrance. If system evolves to two fragments: with fusion hindrance.
12
Fusion hindrance area: (radial evolution)
110Pd+110Pd 100Mo+100Mo
13
Features in the synthesis of SHE
1. Double barrier penetrations Coulomb barrier; Liquid drop barrier V Liquid-drop Energy Coulomb Energy 48Ca+238U RCB = 14.14fm RC = 11.86fm RLB = 9.5fm RC R RLB RCB
14
Features of the SHE synthesis
2. Shell correction takes very important role Fission barrier: Bf = Bf(LD) - DE(shell) Bf (liquid-drop fission barrier) : 0.1 ~ 2 MeV DE(shell) (shell correction energy): -1 到- 9 MeV DE(shell) Bf (LD) R
15
Fusion Probability = Psticking* Pform
Sticking probability: Psticking V Ec.m. VB Coulomb Potential Liquid Drop Potential Contact Point = Rp+Rt R PSticking
16
Sticking probability:
(1) Surface friction model (2) Empirical formula by Swiatecki [Swiatecki et al., PRC 71, (2005)] (parameters are slightly changed to fit the experimental capture cross section for 48Ca+238U, 244Pu, 248Cm )
17
B0 = Bswiat + DB 在超重核区对 B0 和 C 进行重新拟合
experimental capture cross section: M. G. Itkis et al., Nuovo Cimento A111, 783 (1998).
18
Extrapolation of parameter DB
19
Formation Probability
Formation probability: Pform (Using LD model) V Ec.m. VB Coulomb Potential Liquid Drop Potential Contact Point = Rp + Rt Rc R Pform PSticking
20
Equation of motion for R and a
Langevin equaiton:
21
Tracks of motion with random force
Ek=50MeV
22
Formation probability
According to the friction model,the relative momentums are distributed in Gaussian form: For the fusion of heavy systems, 0 Then we get formation probability:
23
Example 48Ca + 247Bk
24
Evaporation probability (HIVAP)
Statistical evaporation model ! (factor: fit to the experimental data for 48Ca+248Cm ) Yu. Ts. Oganessian et al., PRC70, (2004)064609
25
Application (1) Repeat 48Ca+249Cf 3n 4n 5n 2n
Experimental data: Yu. Ts. Oganessian, PRC70, (2004)064609
26
(2) 48Ca + Bk isotopes ( Z = 117)
28
48Ca + 249Bk 2n 3n 4n 5n 2009年7月27-10月23 (70天) 2.4×1019 dose
29
Bk(NO3)3 22 mg 249Bk transport Prices per 1 mg 197Au ≈ 0.03 US$
239Pu ≈ 4 US$ 48Ca ≈ 80 US$ 249Cf ≈ 60,000 US$
30
(3) 48Ca +Es Z = 119, A = 300 T1/2=472d 3n 4n 2n 5n
31
T1/2=276d Z = 119, A = 302
32
Z = 120, A = 305 T1/2 = 100.5d Last chance for 48Ca to synthesize SHE
33
小结 根据重核融合的特点,融合过程分为两步 : 粘连过程和形成过程。
融合阻止 (fusion hindrance) 起源于重核融合过程中的液滴能位垒。形成过程的郎之万模拟自动考虑了这一影响。 计算了48Ca引起的系列反应,与实验较好符合。计算的48Ca+249Bk被实验所证实。 剩余截面(通过裂变位垒)对壳修正严重依赖。后者需要更好的理论计算。
34
Thanks !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.