Download presentation
Presentation is loading. Please wait.
Published byTessa van Veen Modified over 5 years ago
1
ALGEBRA I - SECTION 8-3 : MULTIPLYING BINOMIALS
6/30/2019 ALGEBRA I @ SECTION 8-3 : MULTIPLYING BINOMIALS
2
Shelby and Sarah have a sunflower garden
Shelby and Sarah have a sunflower garden. The measure of each side is x feet. They decide they want to expand their garden to plant roses, tulips and daffodils. To expand the garden they will add 2 feet to the length and 3 feet to the width. Find the area of the new garden.
3
Shelby and Sarah have a sunflower garden
Shelby and Sarah have a sunflower garden. The measure of each side is x feet. They decide they want to expand their garden to plant roses, tulips and daffodils. To expand the garden they will add 2 feet to the length and 3 feet to the width. Find the area of the new garden. x 3 sunflower rose daffodil tulip x 2
4
To multiply a binomial by a binomial
5
To multiply a binomial by a binomial
(x + y) (a + b)
6
To multiply a binomial by a binomial
(x + y) (a + b) First → x•a
7
To multiply a binomial by a binomial
(x + y) (a + b) First → x•a xa
8
To multiply a binomial by a binomial
(x + y) (a + b) First → x•a Outer → x•b xa
9
To multiply a binomial by a binomial
(x + y) (a + b) First → x•a Outer → x•b xa + xb
10
To multiply a binomial by a binomial
(x + y) (a + b) First → x•a Outer → x•b xa + xb Inner → y•a
11
To multiply a binomial by a binomial
(x + y) (a + b) First → x•a Outer → x•b xa + xb + ya Inner → y•a
12
To multiply a binomial by a binomial
(x + y) (a + b) First → x•a Outer → x•b xa + xb + ya Inner → y•a Last → y•b
13
To multiply a binomial by a binomial
(x + y) (a + b) First → x•a Outer → x•b xa + xb + ya + yb Inner → y•a Last → y•b
14
F.O.I.L. To multiply a binomial by a binomial (x + y) (a + b)
First → x•a Outer → x•b xa + xb + ya + yb Inner → y•a Last → y•b
15
F.O.I.L. 1) (y + 4)(y + 6)
16
F.O.I.L. 1) (y + 4)(y + 6) ) (2x - 3)(2x + 2)
17
F.O.I.L. 1) (y + 4)(y + 6) ) (2x - 3)(2x + 2) 3) (3a - b)(2a + 4b)
18
F.O.I.L. 1) (y + 4)(y + 6) 2) (2x - 3)(2x + 2)
3) (3a - b)(2a + 4b) 4) (n + 5)(n + 3)
19
F.O.I.L. 5) (2x + y)(3x – 2y)
20
F.O.I.L. 5) (2x + y)(3x – 2y) 6) (x² - 4)(2x + 3)
21
F.O.I.L. 5) (2x + y)(3x – 2y) 6) (x² - 4)(2x + 3) 7) (x² + 5)(3x² - 1)
22
F.O.I.L. 5) (2x + y)(3x – 2y) 6) (x² - 4)(2x + 3) 7) (x² + 5)(3x² - 1)
8) (8m + 2n)(6n + 5m)
23
F.O.I.L. 9) (4x - 3)(2x + 5)
24
F.O.I.L. 9) (4x - 3)(2x + 5) ) (9x² - 3)(9x + 3)
25
F.O.I.L. 9) (4x - 3)(2x + 5) ) (9x² - 3)(9x + 3) 11) (x + 5)(x - 5)
26
F.O.I.L. 9) (4x - 3)(2x + 5) 10) (9x² - 3)(9x + 3)
11) (x + 5)(x - 5) ) (2m + 2)(2m + 2)
27
13) (4x + 3)(3x2 – 2x + 5) 14) (2x2 – 3x + 5)(x2 + 8x – 3)
Find each product. 13) (4x + 3)(3x2 – 2x + 5) 14) (2x2 – 3x + 5)(x2 + 8x – 3)
28
Find the area of the rectangle...
29
Find the area of the rectangle...
2x-4 x+2
30
Find the area of the rectangle...
x+4 2x-4 x+2 x²-8
31
Find the area of the shaded region
2x + 1 x + 2 8 x+7 6 x - 1
32
FUN WITH FOILING
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.