Download presentation
Presentation is loading. Please wait.
1
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz, Geoff Krafft and Timofey Zolkin USPAS, Fort Collins, CO, June 10-21, 2013
2
Outline Practical Examples: Soft-edge Solenoid model
Vertex-to-plane adapter for electron cooling (Fermilab) Spin Rotator for Figure-8 Collider ring Ionization cooling channel for Neutrino Factory and Muon Collider Generalized vertex-to-plane transformer insert V. Lebedev, A. Bogacz, ‘Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom’, 2000, USPAS, Fort Collins, CO, June 10-21, 2013
3
‘Hard-edge’ Solenoid USPAS, Fort Collins, CO, June 10-21, 2013
4
Solenoid – ‘Hard-edge’ Model
Linear Transfer Matrix for infinitely long solenoid : USPAS, Fort Collins, CO, June 10-21, 2013
5
‘Soft-edge’ Solenoid USPAS, Fort Collins, CO, June 10-21, 2013
6
Solenoid – ‘Soft-edge’ Model
Non-zero aperture - correction due to the finite length of the edge: It introduces axially symmetric edge focusing at each solenoid end: USPAS, Fort Collins, CO, June 10-21, 2013
7
‘Soft-edge’ Solenoid – Off-axis Fields
Nonlinear focusing term DF ~ O(r2) follows from the scalar potential: Solenoid B-fields Nonlinear focusing included in particle tracking USPAS, Fort Collins, CO, June 10-21, 2013
8
Axisymmetric Rotational Distribution
USPAS, Fort Collins, CO, June 10-21, 2013
9
Axisymmetric Rotational Distribution
USPAS, Fort Collins, CO, June 10-21, 2013
10
Axisymmetric Rotational Distribution
USPAS, Fort Collins, CO, June 10-21, 2013
11
Axisymmetric Rotational Distribution
USPAS, Fort Collins, CO, June 10-21, 2013
12
Spin Rotators for Figure-8 Collider Ring
total ring circumference ~1000 m 60 deg. crossing USPAS, Fort Collins, CO, June 10-21, 2013
13
Spin Rotator - Ingredients…
320 230 15 0.15 -0.15 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Arc end 4.4 0 8.8 0 Spin rotator ~ 46 m BL = 11.9 Tesla m BL = 28.7 Tesla m USPAS, Fort Collins, CO, June 10-21, 2013
14
Locally Decoupled Solenoid Pair
15 5 BETA_X&Y[m] BETA_1X BETA_2Y BETA_1Y BETA_2X BL = 28.7 Tesla m solenoid m solenoid m decoupling quad insert M = C - C Hisham Sayed, PhD Thesis ODU, 2011 USPAS, Fort Collins, CO, June 10-21, 2013
15
Locally Decoupled Solenoid Pair
15 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y BL = 28.7 Tesla m solenoid m solenoid m decoupling quad insert M = C - C Hisham Sayed, PhD Thesis ODU, 2011 USPAS, Fort Collins, CO, June 10-21, 2013
16
Universal Spin Rotator - Optics
5 GeV 374 288 30 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4.4 0 8.8 0 Spin rotator ~ 46 m BL = 11.9 Tesla m BL = 28.7 Tesla m USPAS, Fort Collins, CO, June 10-21, 2013
17
Ionization Cooling in an Axially Symmetric Channel
USPAS, Fort Collins, CO, June 10-21, 2013
18
Ionization Cooling in an Axially Symmetric Channel
USPAS, Fort Collins, CO, June 10-21, 2013
19
Principle of Ionization Cooling
Each particle loses momentum by ionizing a low-Z absorber Only the longitudinal momentum is restored by RF cavities The angular divergence is reduced until limited by multiple scattering USPAS, Fort Collins, CO, June 10-21, 2013
20
Ionization Cooling in an Axially Symmetric Channel
USPAS, Fort Collins, CO, June 10-21, 2013
21
Canonical vs Geometric Variables
USPAS, Fort Collins, CO, June 10-21, 2013
22
Ionization Cooling in an Axially Symmetric Channel
USPAS, Fort Collins, CO, June 10-21, 2013
23
Ionization Cooling in an Axially Symmetric Channel
USPAS, Fort Collins, CO, June 10-21, 2013
24
Ionization Cooling in an Axially Symmetric Channel
USPAS, Fort Collins, CO, June 10-21, 2013
25
Ionization Cooling in an Axially Symmetric Channel
USPAS, Fort Collins, CO, June 10-21, 2013
26
Ionization Cooling in an Axially Symmetric Channel
USPAS, Fort Collins, CO, June 10-21, 2013
27
Axially Symmetric FOFO Cell
USPAS, Fort Collins, CO, June 10-21, 2013
28
Periodic Cell - Optics ‘inward half-cell’ ‘outward half-cell’
betatron phase adv/cell (h/v) = p/2p USPAS, Fort Collins, CO, June 10-21, 2013
29
Periodic Cell – Magnets
‘inward half-cell’ ‘outward half-cell’ betatron phase adv/cell (h/v) = p/2p solenoids: L[cm] B[kG] quadrupoles: L[cm] G[kG/cm] dipoles: $L=20; => cm $B= ; => kGauss $Ang=$L*$B/$Hr; => rad $ang=$Ang*180/$PI; => deg USPAS, Fort Collins, CO, June 10-21, 2013
30
‘Snake’ Cooling Channel
entrance cell periodic cells exit cell USPAS, Fort Collins, CO, June 10-21, 2013
31
Muon Cooling Channel - Optics
beam extension disp. anti-suppr. disp. suppr. beam extension RF cavity skew quad n periodic PIC/REMEX cells (n=2) USPAS, Fort Collins, CO, June 10-21, 2013
32
Vertex-to-plane Transformer Insert
USPAS, Fort Collins, CO, June 10-21, 2013
33
Vertex-to-plane Transformer Insert
USPAS, Fort Collins, CO, June 10-21, 2013
34
Vertex-to-plane Transformer Insert
USPAS, Fort Collins, CO, June 10-21, 2013
35
Vertex-to-plane Transformer Insert
1 5 BETA_X&Y[m] BETA_1X BETA_2Y BETA_1Y BETA_2X -1 Betatron size X&Y[cm] AlphaXY[-1, +1] Ax Ay AlphaXY 0.5 PHASE/(2*PI) Q_1 Q_2 Teta1 Teta2 USPAS, Fort Collins, CO, June 10-21, 2013
36
Summary USPAS, Fort Collins, CO, June 10-21, 2013
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.