Presentation is loading. Please wait.

Presentation is loading. Please wait.

Design of Vertical Axis Wind Turbines

Similar presentations


Presentation on theme: "Design of Vertical Axis Wind Turbines"— Presentation transcript:

1 Design of Vertical Axis Wind Turbines
P M V Subbarao Professor Mechanical Engineering Department A Stable and Rugged Configuration .....

2 General Configuration of a Vertical-Axis Wind Turbine

3 The Turbine Rotor Subsystem : VAWT
Blades are shaped to approximate a troposkien

4 Local Details of The VAWT
Z (m) r (m) V (m/s)

5 Problem Statement

6 Annual Energy Fraction vs velocity
Bromma Malamo Visby

7 Power Law Wind Profile The power law is used by many wind energy researchers. From the roughness length Lawn, water: z0 = 0.01 m Bushland: z0 = 0.1 m Towns, forests: z0 = 1m

8 Single Stream Tube (SST) Model
V V Vw VAWT blades project a cylinder that is parallel to the stream tube. The blades cross the normal actuator disc twice along their upwind and downwind path. The induction factor:  azimuth angle

9 Local Instantaneous Airfoil velocity and Force diagrams
The relative velocity component (VR) Normalized relative velocity

10 Local Details of The VAWT
Z (m) r (m)

11 Rotor and blade element coordinate system
Rotor coordinate system Top view Blade element coordinate system

12 Kinetics Vs Kinematics of VWAT
Normalized relative velocity angle of attack Normal Force Coefficient Tangential Force Coefficient

13 Local Instantaneous Torque per Blade
The local instantaneous Tangential force (dFti) on one single airfoil at certain θ is The local instantaneous Torque (di) on one single airfoil at certain θ is A single blade passes each stream tube twice per revolution in the upstream and downsteam.

14 Local Details of The VAWT
Z (m) r (m)

15   VR(m/s) CL CD

16 Submitted By: Lt Col Vivek Bandal 2016MET2570 Ajay Singh 2016MET2563
Wind Power Farm Assgn:6 Submitted By: Lt Col Vivek Bandal 2016MET2570 Ajay Singh 2016MET2563

17 1st Quadrant θ in degrees α in degrees Vr Cl Cd 34.27054 0.00575 10
10 0.1427 20 0.2793 30 0.4202 40 0.5793 50 0.7225 60 0.8143 0.0119 70 0.8723 80 0.9142 90 0.9418

18 2nd Quadrant θ in degrees α in degrees Vr Cl Cd 90 8.270232 30.00832
0.9418 100 0.9497 110 0.9366 0.0141 120 0.9024 0.0134 130 0.8453 140 0.7599 150 0.5819 160 0.3772 170 0.1929 180 1.28E-15

19 3rd Quadrant θ in degrees α in degrees Vr Cl Cd 180 1.28E-15 25.12196
190 200 0.0076 210 220 230 -0.904 240 250 260 270

20 4th Quadrant θ in degrees α in degrees Vr Cl Cd 270 -9.24207 30.08682
280 -8.851 -0.989 290 300 310 320 -0.626 0.0098 330 340 350 360 -1.9E-15

21 z=23.80m;r=16.63m;Vo=3.89;Lambda=4.4; me1130645
Theta (degree) Relative velocity alfa (degree) Cl Cd df/dh dT/dh 21.01 0.00 0.01 10 20.91 1.83 0.19 3.05 50.74 20 20.73 3.60 0.38 12.99 216.04 30 20.46 5.28 0.57 28.38 472.04 40 20.11 6.84 0.80 50.62 841.79 50 19.70 8.27 0.97 71.28 60 19.22 9.53 1.05 0.02 84.46 70 18.68 10.59 1.11 94.12 80 18.11 11.43 1.16 99.22 90 17.50 12.00 1.18 99.27 100 16.87 12.28 1.20 95.45 110 16.23 12.21 87.70 120 15.61 11.76 1.17 76.49 130 15.01 10.88 1.13 63.14 140 14.46 9.54 47.93 797.12 150 13.98 7.74 0.94 32.36 538.10 160 13.60 5.49 0.61 14.03 233.24 170 13.35 2.87 0.30 3.33 55.40 180 13.23

22 z=23.80m;r=16.63m;Vo=3.89;Lambda=4.4; me1130645
Theta (degree) Relative velocity alfa (degree) Cl Cd df/dh dT/dh 180 13.23 0.00 0.01 190 13.26 -2.95 -0.31 4.76 79.10 200 13.45 -5.81 -0.65 19.25 320.11 210 13.78 -8.38 -0.98 43.25 719.29 220 14.25 -10.54 -1.11 0.02 65.57 230 14.82 -12.19 -1.20 88.68 240 15.48 -13.30 -1.24 0.03 110.41 250 16.18 -13.88 -1.26 128.44 260 16.90 -13.97 141.19 270 17.61 -13.61 148.16 280 18.29 -12.88 -1.22 146.66 290 18.93 -11.83 -1.18 138.84 300 19.50 -10.52 122.40 310 19.99 -9.01 -1.02 101.42 320 20.39 -7.34 -0.87 74.08 330 20.69 -5.57 -0.62 41.54 690.85 340 20.90 -3.73 -0.39 18.44 306.70 350 21.00 -1.86 -0.20 5.06 84.21

23 Tutorial 6 z 19.5 m Uinf 3.67 m/s a/sin(Theta) 0.07 r 12.2 m lambda 3.4 Re 5.49E+05 Theta Rad alfa rad alfa deg Vr Cl Cd dFti/dH dTi 16.148 10 0.2357 20 0.4685 30 0.7564 40 0.1475 0.9787 50 10.252 1.0854 60 1.1708 0.0212 70 1.2359 80 1.2707 90 1.29

24 z=43.2m theta alfa(degrees) Vr cl cd dFt dtau 8.494759206 0.00665
10 0.4063 20 0.8597 30 1.1712 40 1.3334 0.0298 50 1.3197 60 1.183 70 80 90

25 z=43.2m theta alfa(degrees) Vr cl cd dFt dtau 270 34.03455601
280 290 300 1.1171 0.1875 310 1.2441 320 1.3591 330 1.2029 340 0.9149 350 0.4168

26 z 45.9 : U∞ 4.74 NACA0015 θ α Vr Cl Cd dFti/dh dτ/dh 0.00 36.45 0.01
NACA0015 θ α Vr Cl Cd dFti/dh dτ/dh 0.00 36.45 0.01 -12.96 10 1.29 36.34 0.14 252.87 20 2.52 36.12 0.27 311.64 30 3.64 35.78 0.39 40 4.64 35.34 0.49 50 5.48 34.81 0.59 60 6.15 34.19 0.68 70 6.63 33.52 0.75 401.06 80 6.92 32.79 0.79 721.15 90 7.01 32.03 0.80 784.96 100 6.91 31.25 0.78 637.59 110 6.60 30.47 0.74 299.34 120 6.11 29.71 0.67 130 5.43 29.00 0.58 140 4.59 28.36 150 3.60 27.81 0.38 160 2.48 27.38 184.39 170 1.27 27.10 137.76 180 26.97 -7.10

27 z 45.9 : U∞ 4.74 NACA0015 θ α Vr Cl Cd dFti/dh dτ/dh 190 -1.30 27.01
NACA0015 θ α Vr Cl Cd dFti/dh dτ/dh 190 -1.30 27.01 -0.14 0.01 140.70 200 -2.58 27.22 -0.28 166.52 210 -3.80 27.60 -0.41 220 -4.92 28.13 -0.52 230 -5.90 28.79 -0.64 240 -6.70 29.54 -0.76 376.35 250 -7.30 30.37 -0.84 950.08 260 -7.67 31.23 -0.89 270 -7.80 32.10 -0.91 280 -7.69 32.95 290 -7.33 33.74 300 -6.75 34.46 572.96 310 -5.95 35.09 -0.65 320 -4.97 35.61 -0.53 330 -3.84 36.01 340 -2.61 36.28 284.19 350 -1.31 36.43 -0.15 269.61 360 0.00 36.45 -12.96

28 Time Averaged Local Torque
The time averaged local torque generated by “B” blades and twice per revolution can be expressed as The time averaged total torque generated by “B” blades and twice per revolution can be expressed as

29 Local Details of The VAWT
Z (m) r (m) V (m/s) davg,loc


Download ppt "Design of Vertical Axis Wind Turbines"

Similar presentations


Ads by Google