Presentation is loading. Please wait.

Presentation is loading. Please wait.

IGCSE Solving Equations

Similar presentations


Presentation on theme: "IGCSE Solving Equations"β€” Presentation transcript:

1 IGCSE Solving Equations
Dr J Frost Objectives: From the specification: Last modified: 23rd August 2015

2 What makes this topic Further-mathsey?
There is no new material relative to the normal GCSE. Here are types of questions that tend to come up: Solving linear equations Use of the quadratic formula Equations involving algebraic fractions Operators

3 RECAP :: Linear and other simple equations
June 2013 Paper 1 Set 1 Paper 2 ? 33+ π‘₯ =36 π‘₯ =3 π‘₯=9 9βˆ’2𝑑=4βˆ’4𝑑 2𝑑=βˆ’5 𝑑=βˆ’ 5 2 ? Bro Tip: Remember we β€˜cross multiply’ if we just have a fraction on each side. Set 4 Paper 2 Set 4 Paper 2 ? ? 35+4 π‘₯ 2 =36 4 π‘₯ 2 =1 π‘₯ 2 = 1 4 π‘₯=Β± 1 2 27=8 π‘₯ = π‘₯ 3 π‘₯= 3 2

4 RECAP :: Use of the quadratic formula
? π‘Ž=1, 𝑏=6, 𝑐=7 π‘₯= βˆ’6Β± 36βˆ’28 2 = βˆ’6Β± = βˆ’6Β± =βˆ’3Β± 2 Quadratic Formula (provided in exam) If π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐=0, π‘₯= βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž

5 RECAP :: Algebraic fractions in equations
4 π‘₯+3 +1 π‘₯βˆ’2 π‘₯βˆ’2 π‘₯+3 =5 5π‘₯+10=5 π‘₯βˆ’2 π‘₯+3 5π‘₯+10=5 π‘₯ 2 +π‘₯βˆ’6 5π‘₯+10=5 π‘₯ 2 +5π‘₯βˆ’30 5 π‘₯ 2 βˆ’40=0 π‘₯ 2 =8 π‘₯=Β± 8 =Β±2 2 First Step ? Simply combine any fractions into one. ?

6 Test Your Understanding
π‘₯ 2π‘₯βˆ’3 + 4 π‘₯+1 =1 π‘₯ 2 +9π‘₯βˆ’12 2π‘₯βˆ’3 π‘₯+1 =1 π‘₯ 2 +9π‘₯βˆ’12= 2π‘₯βˆ’3 π‘₯+1 π‘₯ ddddsds π‘₯ 2 +9π‘₯βˆ’12=2 π‘₯ 2 βˆ’π‘₯βˆ’3 π‘₯ 2 βˆ’10π‘₯+9=0 π‘₯βˆ’1 π‘₯βˆ’9 =0 𝒙=𝟏 𝒐𝒓 𝒙=πŸ— ?

7 Defined Operators An operator is simply a function used in a symbol like way. For example + π‘₯,𝑦 is a function which adds its two arguments π‘₯ and 𝑦, however we obviously write it as π‘₯+𝑦 (+ is known as an β€˜infix’ operator). πŸ’πš«βˆ’πŸ‘=πŸ‘ πŸ’ 𝟐 +πŸ’βˆ’ βˆ’πŸ‘ 𝟐 βˆ’ βˆ’πŸ‘ =πŸ’πŸ–+πŸ’βˆ’πŸ—+πŸ‘=πŸ’πŸ” ? π’™πš«πŸ“=πŸ‘ 𝒙 𝟐 +π’™βˆ’ πŸ“ 𝟐 βˆ’πŸ“=𝟎 πŸ‘ 𝒙 𝟐 +π’™βˆ’πŸ‘πŸŽ=𝟎 πŸ‘π’™+𝟏𝟎 π’™βˆ’πŸ‘ =𝟎 𝒙=βˆ’ 𝟏𝟎 πŸ‘ 𝒐𝒓 πŸ‘ ?

8 Test Your Understanding
Jan 2013 Paper 1 πŸπ›πŸ’=πŸ“ 𝟐 𝟐 βˆ’πŸ– 𝟐 + πŸ’ 𝟐 βˆ’πŸ πŸ’ =πŸπŸŽβˆ’πŸπŸ”+πŸπŸ”βˆ’πŸ– =𝟏𝟐 ? π’™π›πŸ‘=πŸ“ 𝒙 𝟐 βˆ’πŸ–π’™+ πŸ‘ 𝟐 βˆ’πŸ πŸ‘ πŸ“ 𝒙 𝟐 βˆ’πŸ–π’™+πŸ‘=𝟎 πŸ“π’™βˆ’πŸ‘ π’™βˆ’πŸ =𝟎 𝒙= πŸ‘ πŸ“ , 𝟏 ?

9 Exercises ? ? ? ? ? ? ? ? ? ? ? ? ? [Specimen 1] Solve 3π‘₯+10 =4 𝒙=𝟐
[Set 2 Paper 2] Solve π‘₯βˆ’4 3 + π‘₯ 5 =2 𝒙= πŸπŸ“ πŸ’ [Set 3 Paper 1] Solve π‘¦βˆ’ 𝑦+1 4 =3 π’š= πŸ— 𝟐 [Jan 2013 Paper 2] Show that 4 π‘₯ + 2 π‘₯βˆ’1 simplifies to 6π‘₯βˆ’4 π‘₯ π‘₯βˆ’1 Hence or otherwise, solve 4 π‘₯ + 2 π‘₯βˆ’1 =3 giving your answer to 3sf 𝒙=𝟎.πŸ“πŸ’πŸ‘, 𝟐.πŸ’πŸ” [Set 1 Paper 2] Solve π‘₯ 2 βˆ’11π‘₯+28= 𝒙=πŸ’,πŸ• Use your answer to part (a) to solve π‘₯βˆ’11 π‘₯ +28= 𝒙=πŸπŸ”,πŸ’πŸ— Let π‘₯βˆŽπ‘¦= π‘₯ 2 βˆ’π‘₯π‘¦βˆ’ 𝑦 2 Determine 3βˆŽβˆ’1 =𝟏𝟏 Solve π‘βˆŽ3= 𝒑=βˆ’πŸ 𝒐𝒓 πŸ“ Solve π‘₯ 2 βˆ’ 2 π‘₯+1 = 𝒙=πŸ‘, βˆ’πŸ Solve π‘₯ 2 +4π‘₯βˆ’2, giving your answer in the form π‘ŽΒ± 𝑏 . 𝒙=βˆ’πŸΒ± πŸ“ Hence solve π‘₯ 4 βˆ’4 π‘₯ 2 βˆ’2, giving your solution to 3sf. 𝒙 𝟐 =βˆ’πŸ+ πŸ“ 𝒙=𝟎.πŸ’πŸ–πŸ” Solve π‘₯+4 =π‘₯+3 giving your solution(s) to 3sf. 𝒙+πŸ’= 𝒙 𝟐 +πŸ”π’™+πŸ— 𝒙 𝟐 +πŸ“π’™+πŸ“=𝟎 𝒙=βˆ’πŸ.πŸ‘πŸ– Let π‘ŽβŠšπ‘= π‘Ž 2 + 𝑏 2 βˆ’2π‘βˆ’4 Solve 4⊚π‘₯=20. πŸπŸ”+ 𝒙 𝟐 βˆ’πŸπ’™βˆ’πŸ’=𝟐𝟎 𝒙=βˆ’πŸ, πŸ’ ? 1 7 ? 2 ? 8 3 4 ? ? ? 5 9 ? ? ? 6 ? 10 ? ?


Download ppt "IGCSE Solving Equations"

Similar presentations


Ads by Google