Download presentation
Presentation is loading. Please wait.
Published byBambang Pranata Modified over 5 years ago
1
1.) 2.) Algebra 2/Trigonometry Name: __________________________
6.6 Worksheet Date: ________________ Block: _____ For each polynomial, complete the following: (a) Use the Leading Coefficient Test to describe the end behavior. (b) Use your graphing calculator to locate one of the zeros. Then, find all remaining Zeros. All non- integer zeros must be written as improper fractions. You must show all work & checks for these! (c) Write the polynomial in factored form. (d) Sketch the graph of the polynomial. (You must include the y-intercept, all zeros, any relative minima/maxima, and the basic shape using the Leading Coefficient Test). 1.) π π₯ = π₯ 3 β4 π₯ 2 βπ₯+4 (a) Describe End Behavior: ______________________________________________________ (b) Zeros: ___________________ (c) Product of Linear Factors: ____________________________ (d) Relative Minima/Maxima: _________________________________________________________ 2.) π π₯ = π₯ 3 β7π₯β6 (a) Describe End Behavior: ______________________________________________________ (b) Zeros: ___________________ (c) Product of Linear Factors: ____________________________ (d) Relative Minima/Maxima: _________________________________________________________
2
Note: you may need to change the scale on the y-axis.
For each polynomial, complete the following: (a) Use the Leading Coefficient Test to describe the end behavior. (b) Use your graphing calculator to locate one of the zeros. Then, find all remaining Zeros. All non- integer zeros must be written as improper fractions. You must show all work & checks for these! (c) Write the polynomial in factored form. (d) Sketch the graph of the polynomial. (You must include the y-intercept, all zeros, any relative minima/maxima, and the basic shape using the Leading Coefficient Test). 3.) π π₯ =β π₯ 3 +6 π₯ 2 β11π₯+6 (a) Describe End Behavior: ______________________________________________________ (b) Zeros: ___________________ (c) Product of Linear Factors: ____________________________ (d) Relative Minima/Maxima: _________________________________________________________ 4.) π π₯ =2 π₯ 4 β15 π₯ π₯ 2 +15π₯β25 Note: you may need to change the scale on the y-axis. (a) Describe End Behavior: ______________________________________________________ (b) Zeros: ___________________ (c) Product of Linear Factors: ____________________________ (d) Relative Minima/Maxima: _________________________________________________________
3
5.) 6.) π π₯ = π₯ 3 β3 π₯ 2 +π₯β3 π π₯ = π₯ 3 + π₯ 2 +9π₯+9
For each polynomial, complete the following: (a) Use the Leading Coefficient Test to describe the end behavior. (b) Use your graphing calculator to locate one of the zeros. Then, find all remaining Zeros. All non- integer zeros must be written as improper fractions. You must show all work & checks for these! (c) Write the polynomial in factored form. (d) Sketch the graph of the polynomial. (You must include the y-intercept, all zeros, any relative minima/maxima, and the basic shape using the Leading Coefficient Test). 5.) π π₯ = π₯ 3 β3 π₯ 2 +π₯β3 (a) Describe End Behavior: ______________________________________________________ (b) Zeros: ___________________ (c) Factored Form: ____________________________________ (d) Relative Minima/Maxima: _________________________________________________________ 6.) π π₯ = π₯ 3 + π₯ 2 +9π₯+9 (a) Describe End Behavior: ______________________________________________________ (b) Zeros: ___________________ (c) Factored Form: ____________________________________ (d) Relative Minima/Maxima: _________________________________________________________
4
Note: you should change the scale on the y-axis.
For each polynomial, complete the following: (a) Use the Leading Coefficient Test to describe the end behavior. (b) Use your graphing calculator to locate one of the zeros. Then, find all remaining Zeros. All non- integer zeros must be written as improper fractions. You must show all work & checks for these! (c) Write the polynomial in factored form. (d) Sketch the graph of the polynomial. (You must include the y-intercept, all zeros, any relative minima/maxima, and the basic shape using the Leading Coefficient Test). 7.) π π₯ = 3π₯ 3 β19 π₯ 2 +33π₯β9 (a) Describe End Behavior: ______________________________________________________ (b) Zeros: ___________________ (c) Product of Linear Factors: ____________________________ (d) Relative Minima/Maxima: _________________________________________________________ 8.) π π₯ = β π₯ 4 +5π₯ 3 +3 π₯ 2 β17π₯+10 Note: you should change the scale on the y-axis. (a) Describe End Behavior: ______________________________________________________ (b) Zeros: ___________________ (c) Product of Linear Factors: ____________________________ (d) Relative Minima/Maxima: _________________________________________________________
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.