Download presentation
Presentation is loading. Please wait.
1
COSC 3340: Introduction to Theory of Computation
University of Houston Fall 2003, Dr. Verma Lecture 11 Lecture 11 UofH - COSC Dr. Verma
2
Push Down Automaton (PDA)
Language Acceptor Model for CFLs It is an NFA with a stack. Finite State control Input Accept/Reject Stack Lecture 11 UofH - COSC Dr. Verma
3
PDA (contd.) In one move the PDA can :
change state, consume a symbol from the input tape or ignore it pop a symbol from the stack or ignore it push a symbol onto the stack or not A string is accepted provided the machine when started in the start state consumes the string and reaches a final state. Lecture 11 UofH - COSC Dr. Verma
4
PDA (contd.) If PDA in state q can consume u, pop x from stack, change state to p, and push w on stack we show it as u, x w q0 q1 u, x ; w In JFLAP Lecture 11 UofH - COSC Dr. Verma
5
Example of a PDA PDA L = {anbn |n 0}
Push S to the stack in the beginning and then pop it at the end before accepting. Lecture 11 UofH - COSC Dr. Verma
6
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
7
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
8
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
9
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
10
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
11
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
12
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
13
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
14
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
15
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
16
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
17
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
18
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
19
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
20
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
21
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
22
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
23
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
24
JFLAP Simulation Lecture 11 UofH - COSC Dr. Verma
25
Definition of PDA Formally, a PDA M = (K, , , , s, F). where
K -- finite set of states -- is the input alphabet -- is the tape alphabet s K -- is the start state F K -- is the set of final states (K X X ) X (K X ) Lecture 11 UofH - COSC Dr. Verma
26
Definition of L(M) Define * as:
(1) *(q, , ) = {(q, , )} {(p, , ) |((q, , ), (p, )) } (2) *(q, uv, xy) = {(p, v, wy) | ((q, u, x), (p, w)) } M accepts w if (f, , x) in *(s, w, ) L(M) = {w * | M accepts w} Lecture 11 UofH - COSC Dr. Verma
27
Example What is L(M)? Push S to the stack in the beginning and
then pop it at the end before accepting. Lecture 11 UofH - COSC Dr. Verma
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.