Download presentation
Presentation is loading. Please wait.
1
Cosmological parameters with radio galaxies
Oleg Verkhodanov Special astrophysical observator Nizhnij Arkhyz
2
Radio cosmology Dark ages
3
Radio galaxies - galaxies with radio power mostly due to nucleus activity Power of emission is up to 10^48 erg/s
4
What are the radio galaxies ?
5
Cygnus A E-galaxy m=16 z = 0.057, theta~2' (80 kpc),
v = 0.02c, P= 3x10^44 erg/s
6
Centaurus A (NGC 5128) P = 10^42 erg/s, d = 12 kpc
7
Virgo A (NGC 4486, M87) cD-galaxy 20'' (1.5 kpc) optical jet
8
Radio galaxies identified with gE or cD galaxies
and should be visible in optics and radio waves from very beginning (z<~6)
9
2 basic morphological types of RG
Fanaroff – Riley I Fanaroff – Riley II
10
Unified model
11
Continuum radio galaxy spectra
alpha S~nu Steep spectrum: alpha<-0.5
12
Radio galaxies as Universe reference point
The most distant radio galaxy: z=5.19 (van Breugel et al., 1999)
13
Distribution of radio galaxies for Cambridge catalogs
(Cruz et al., 2007)
14
Cosmology with radio galaxies
a) “size – redshift” (standard rod) b) “luminosity – redshift” (standard candle) c) ''Log N – Log S'' (“source number – flux density”) d) Gravitational lensing e) Clustering and large stellar structure forming f) Age of stellar systems g) Black hole formation at high redshift h) Dark matter search in halos What is good ? (probably, we know) 1) Universe expands, accelerating; 2) There are CMB radiation and its angular fluctuations; 3) elements in Universe.
15
Radio galaxies and large scale structure
16
''Size – redshift'' diagram for radio sources and CMB
(Jackson, Janneta, 2006)
17
Gravitational lenses Einstein ring (RC ) B
18
Source counts: Log N – Log S
FR II: 1) FRII & QSR, alp<-0.5 2) QSR with flat Sp 3) RG, BL Lac, FR I: 6) BL Lac, 7) Starburst galaxies (Jackson, Wall, 1999)
19
“Big Trio” Program RATAN-600 VLA BTA
20
“Big Trio” program 1) Radio sources of the “Cold” survey ( >10 mJy at 7.6 cm) 2) Steep radio spectrum (synchrotron) selection 3) VLA (radio): morphology selection (FR II) 4) 6m telescope (optics): identification, BVRI-photometry, spectrosopy (redshift) 5) Age estimation
21
“Big Trio” program
23
Age of radio galaxies
24
Giant elliptical galaxies with old stellar population ==> photometrical study and existance at very high z ~4 (Pipino & Mantteucci, 2004). selection of distant gE (z>0.5) with radio galaxies ==> by radio astronomical methods (Pedani, 2003).
25
Estimation of stellar and galaxy age
by thermal nuclear reactions - independent test for Universe expansion
26
Sample of 220 objects with 3 subsamples:
(1) Famous radio galaxies FR II (1<z<4): initially 300 RGs (NED) ---> resulting 30 FRII (2) RGs of FR II from the “Cold” survey (“Big Trio”: Parijskij et al., ), (3) Elliptical galaxies from clusters (Stanford, 2002) (0.1<z<1.3)
27
(Verkhodanov, Parijskij, Starobinsky, 2005)
Approximation of t(z) with integral curve and detection of H_o и Omega_Lambda (Verkhodanov, Parijskij, Starobinsky, 2005) Sample binning dz=0.2 и dz=0.3 Take maximum in each bin
28
Two models of synthetic spectra
29
Age [Myr] Redshift z Age [Myr] Redshift z
30
Possible errors metalicity: error ~100 Myr (Jimenez, Loeb, 2002) initial mass function has low influence (Bolzonella et al., 2001), error in galaxy type detection, incomplete sample: robust detection Bootstrap method: mutiplication coefficient 100, variation of H_o ~ 10%
31
Model dz Om_mOm_L H_o epsilon
SED [Myr] GISSEL GISSEL PEGASE PEGASE H_o = 72 +/ Om_L = 0.8 +/- 0.1, not exelent, but satisfys the model
32
What is further ? 2) Combining different methods
1) Select ALL the distant RGs and typical close gEs 2) Combining different methods
33
z = 4.514 (Kopylov et al., 2006) The 2nd RG by z, the 1st RG by power
among RGs, z>4
34
Thank you for hospitality !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.