Download presentation
Presentation is loading. Please wait.
1
FformiwlΓ’u Adiad Trigonometreg
Trigonometric Addition Formulae @mathemateg /adolygumathemateg
2
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
Nid ywβr ffwythiannau trigonometreg yn ddosbarthol. Mae hyn yn golygu fod (er enghraifft) sin π΄+π΅ β sin π΄ + sin π΅ . Gellid profi hyn trwy ystyried π΄=π΅=45Β°: Ochr chwith = sin 45Β°+45Β° = sin 90Β° =1 . Ochr dde = sin 45Β° + sin 45Β° = = β 1. Y fformiwla gywir ar gyfer sin (π΄+π΅) yw sin π΄+π΅ = sin π΄ cos π΅ + cos π΄ sin π΅ . Os yw π΄ a π΅ yn onglau llym, gellid profiβr fformiwla hon trwy ystyried y trionglau ar y sleid nesaf.
3
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
The trigonometric functions are not distributive. This means that (for example) sin π΄+π΅ β sin π΄ + sin π΅ . We can prove this by considering π΄=π΅=45Β°: Left hand side = sin 45Β°+45Β° = sin 90Β° =1 . Right hand side = sin 45Β° + sin 45Β° = = β 1. The correct formula for sin (π΄+π΅) is sin π΄+π΅ = sin π΄ cos π΅ + cos π΄ sin π΅ . If π΄ and π΅ are acute angles, then we can prove this formula by considering the triangles on the next slide.
4
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
Mae πππ ag πππ
yn drionglau ongl sgwΓ’r syβn cynnwys yr onglau π΄ a π΅. Mae π
π ag ππ yn llinellau syβn ffurfioβr onglau sgwΓ’r π π π
ag π
π π. Mae π π π=π
π π felly mae πππ ag ππ
π yn drionglau cyflun. Felly mae π π
π=π΄. sin (π΄+π΅) = ππ
ππ
= ππ+ππ
ππ
= ππ+ππ
ππ
= ππ ππ
+ ππ
ππ
= ππ ππ Γ ππ ππ
+ ππ
ππ
Γ ππ
ππ
= sin π΄ cos π΅ + cos π΄ sin π΅ π
π΄ π π π π΅ π΄ π π π
5
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
πππ and πππ
are right-angled triangles containing the angles π΄ and π΅. π
π and ππ are lines forming the right angles π π π
and π
π π. π π π=π
π π therefore πππ and ππ
π are similar triangles. Therefore π π
π=π΄. sin (π΄+π΅) = ππ
ππ
= ππ+ππ
ππ
= ππ+ππ
ππ
= ππ ππ
+ ππ
ππ
= ππ ππ Γ ππ ππ
+ ππ
ππ
Γ ππ
ππ
= sin π΄ cos π΅ + cos π΄ sin π΅ π
π΄ π π π π΅ π΄ π π π
6
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
Os ydym yn amnewid βπ΅ yn lle π΅ yn y fformiwla sin π΄+π΅ = sin π΄ cos π΅ + cos π΄ sin π΅ cawn sin π΄βπ΅ = sin π΄ cos (βπ΅) + cos π΄ sin (βπ΅) sin π΄βπ΅ = sin π΄ cos π΅ β cos π΄ sin π΅ (trwy gymesuredd graffiau sin a cos.)
7
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
If we substitute βπ΅ instead of π΅ in the formula sin π΄+π΅ = sin π΄ cos π΅ + cos π΄ sin π΅ we obtain sin π΄βπ΅ = sin π΄ cos (βπ΅) + cos π΄ sin (βπ΅) sin π΄βπ΅ = sin π΄ cos π΅ β cos π΄ sin π΅ (through the symmetry of the graphs of sin and cos.)
8
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
Os ydym yn amnewid π 2 βπ΄ yn lle π΄ yn y fformiwla sin π΄βπ΅ = sin π΄ cos π΅ β cos π΄ sin π΅ cawn sin π 2 βπ΄βπ΅ = sin π 2 βπ΄ cos π΅ β cos π 2 βπ΄ sin π΅ sin π 2 βπ΄βπ΅ = cos π΄ cos π΅ β sin π΄ sin π΅ (trwyβr cysylltiad rhwng graffiau sin a cos) sin π π
π = cos π΄ cos π΅ β sin π΄ sin π΅ (yn ystyried y triongl ππ
π) cos π 2 βπ π
π = cos π΄ cos π΅ β sin π΄ sin π΅ cos π΄+π΅ = cos π΄ cos π΅ β sin π΄ sin π΅ π
π΄ π π π π΅ π΄ π π π
9
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
If we substitute π 2 βπ΄ instead of π΄ in the formula sin π΄βπ΅ = sin π΄ cos π΅ β cos π΄ sin π΅ we obtain sin π 2 βπ΄βπ΅ = sin π 2 βπ΄ cos π΅ β cos π 2 βπ΄ sin π΅ sin π 2 βπ΄βπ΅ = cos π΄ cos π΅ β sin π΄ sin π΅ (through the connection between the graphs of sin and cos) sin π π
π = cos π΄ cos π΅ β sin π΄ sin π΅ (considering the triangle ππ
π) cos π 2 βπ π
π = cos π΄ cos π΅ β sin π΄ sin π΅ cos π΄+π΅ = cos π΄ cos π΅ β sin π΄ sin π΅ π
π΄ π π π π΅ π΄ π π π
10
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
Os ydym yn amnewid βπ΅ yn lle π΅ yn y fformiwla cos π΄+π΅ = cos π΄ cos π΅ β sin π΄ sin π΅ cawn cos π΄βπ΅ = cos π΄ cos (βπ΅) β sin π΄ sin (βπ΅) cos π΄βπ΅ = cos π΄ cos π΅ + sin π΄ sin π΅ (trwy gymesuredd graffiau sin a cos.)
11
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
If we substitute βπ΅ instead of π΅ in the formula cos π΄+π΅ = cos π΄ cos π΅ β sin π΄ sin π΅ we obtain cos π΄βπ΅ = cos π΄ cos (βπ΅) β sin π΄ sin (βπ΅) cos π΄βπ΅ = cos π΄ cos π΅ + sin π΄ sin π΅ (through the symmetry of the graphs of sin and cos.)
12
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
tan (π΄+π΅) = sin (π΄+π΅) cos (π΄+π΅)
13
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
Os ydym yn amnewid βπ΅ yn lle π΅ yn y fformiwla tan (π΄+π΅) = tan π΄ + tan π΅ 1β tan π΄ tan π΅ cawn tan (π΄βπ΅) = tan π΄ + tan (βπ΅) 1β tan π΄ tan (βπ΅) tan π΄βπ΅ = tan π΄ β tan π΅ 1+ tan π΄ tan π΅ (trwy gymesuredd graff tan.)
14
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
If we substitute βπ΅ instead of π΅ in the formula tan (π΄+π΅) = tan π΄ + tan π΅ 1β tan π΄ tan π΅ we obtain tan (π΄βπ΅) = tan π΄ + tan (βπ΅) 1β tan π΄ tan (βπ΅) tan π΄βπ΅ = tan π΄ β tan π΅ 1+ tan π΄ tan π΅ (through the symmetry of the graph of tan.)
15
FformiwlΓ’u Adiad Trigonometreg Trigonometric Addition Formulae
Crynodeb / Summary: sin (π΄Β±π΅) = sin π΄ cos π΅ Β± cos π΄ sin π΅ cos (π΄Β±π΅) = cos π΄ cos π΅ β sin π΄ sin π΅ tan π΄Β±π΅ = tan π΄ Β± tan π΅ 1β tan π΄ tan π΅
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.