Presentation is loading. Please wait.

Presentation is loading. Please wait.

Identity Based Encryption from the Diffie-Hellman Assumption

Similar presentations


Presentation on theme: "Identity Based Encryption from the Diffie-Hellman Assumption"β€” Presentation transcript:

1 Identity Based Encryption from the Diffie-Hellman Assumption
Sanjam Garg University of California, Berkeley (Joint work with Nico DΓΆttling)

2 Private-Key Encryption
𝐾 𝐾 𝑐 π‘š Alice Bob 𝑐= 𝐸𝑛𝑐(𝐾, π‘š)

3 Public-Key Encryption [DH76,RSA78,GM82]
Obtain 𝑝 π‘˜ π΅π‘œπ‘ 𝑠 π‘˜ π΅π‘œπ‘ 𝐸𝑛𝑐(𝑝 π‘˜ π΅π‘œπ‘ , π‘š) π‘š Alice Bob

4 Identity-Based Encryption (IBE) [Shamir84, BF01]
Identity of the recipient used as the public key π‘š) π‘š pp Alice Bob First construction based on pairings [BF01] CA/PKG 𝑆 𝐾

5 Reduce the Gap! ABE [SW05] Hierarchical IBE IBE [Pairing, Lattices]
Public-key crypto Public-Key Encryption Trapdoor Functions Private-key crypto Signatures OWF PRG PRF

6 Our Results Main result: IBE from Computational Diffie-Hellman Assumption (Fully-secure) Or, the hardness of Factoring Avoid impossibilities using non-black-box techniques.

7 Challenge? How do we it?

8 Compress two keys 𝑝𝑝 = 𝑝 π‘˜ 0 = 𝑝 π‘˜ 1
Alice Bob 𝑝𝑝 = 𝑝 π‘˜ 0 = 𝑝 π‘˜ 1 Encryption can be done to either 𝑝 π‘˜ 0 or 𝑝 π‘˜ 1 knowing just 𝑝𝑝 Decryption can be done using 𝑝 π‘˜ 0 , 𝑝 π‘˜ 1 and the right secret key 𝑝𝑝 looses information about 𝑝 π‘˜ 0 or 𝑝 π‘˜ 1 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝𝑝 Cara 𝑐= 𝐸𝑛 𝑐 2 (𝑝𝑝, 𝑏, π‘š) π‘š

9 How known schemes from stronger assumptions compress two keys?
𝑝 π‘˜ 0 or 𝑝 π‘˜ 1 are correlated Structured assumptions Impossibility results: Similar intuition 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝𝑝 Our goal: Compress Uncorrelated Keys!

10 Our Construction: Tools
+ Yao’s Garbled Circuits Hash with Encryption

11 Tool I: Hash with Encryption
Three Algorithms: (𝐻,𝐸, 𝐷) H π‘₯ β†’β„Ž β„Ž is short (say πœ†-bits) π‘₯ is 2πœ†-bits 𝐸 (β„Ž,𝑖,𝑏), π‘š →𝑐 where 𝑖 ∈ 2πœ† and 𝑏 ∈ 0,1 𝐷 𝑐, π‘₯ β†’π‘š if 𝐻 π‘₯ =β„Ž and π‘₯ 𝑖 = 𝑏 Security: Hard to compute π‘₯, π‘₯ β€² such that 𝐻 π‘₯ = 𝐻 π‘₯’ Security: π‘₯, 𝐸 (β„Ž,𝑖,1βˆ’ π‘₯ 𝑖 ), 0 β‰ˆπ‘₯, 𝐸 (β„Ž,𝑖,1βˆ’ π‘₯ 𝑖 ), 1 Reminiscent of Witness Encryption [GGSW13] or laconic OT [CDGGMP17].

12 Tool I: Hash with Encryption
Hash Parameters 𝐴 1,0 𝐴 2,0 𝐴 1,1 𝐴 2,1 … 𝐴 𝑛,0 𝐴 𝑛,1 H π‘₯ β†’β„Ž β„Ž= π‘–βˆˆ[𝑛] 𝐴 𝑖, π‘₯ 𝑖 𝐸 (β„Ž,𝑖,𝑏), π‘š →𝑐= 𝐴 1,0 𝑠 𝐴 2,0 𝑠 𝐴 1,1 𝑠 𝐴 2,1 𝑠 … 𝐴 𝑛,0 𝑠 𝐴 𝑛,1 𝑠 , β„Ž 𝑠 βŠ•π‘š D 𝑐, π‘₯ : Set β„Ž 𝑠 = π‘–βˆˆ[𝑛] 𝐴 𝑖, π‘₯ 𝑖 𝑠 Security can be argued based on DDH 𝑔 π‘₯ , 𝑔 𝑦 , 𝑔 π‘₯𝑦 β‰ˆ 𝑔 π‘₯ , 𝑔 𝑦 , 𝑔 π‘Ÿ 𝐴 𝑖,1βˆ’π‘ 𝑠

13 Security: ( 𝐢 , π‘™π‘Žπ‘ 𝑖, π‘₯ 𝑖 )β‰ˆπ‘†π‘–π‘š(𝐢 π‘₯ )
Tool 2: Yao’s Garbled Circuits (πΊπ‘Žπ‘Ÿπ‘π‘™π‘’,πΈπ‘£π‘Žπ‘™) [Yao86, AIK04, AIK05, LP09, BHR12] πΊπ‘Žπ‘Ÿπ‘π‘™π‘’ 𝐢 β†’ 𝐢 , π‘™π‘Ž 𝑏 𝑖,0 , π‘™π‘Ž 𝑏 𝑖,1 𝑖 πΈπ‘£π‘Žπ‘™ 𝐢 , π‘™π‘Žπ‘ 𝑖, π‘₯ 𝑖 →𝐢(π‘₯) Security: ( 𝐢 , π‘™π‘Žπ‘ 𝑖, π‘₯ 𝑖 )β‰ˆπ‘†π‘–π‘š(𝐢 π‘₯ )

14 How do we compress? 𝑝𝑝 = 𝐻 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝𝑝

15 How do we encrypt? 𝑐= 𝐸𝑛 𝑐 2 (𝑝𝑝, 𝑏, π‘š) 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝𝑝 𝑃 𝑝𝑝, 𝑏, π‘š π‘₯
Obfuscation Lens! How do we encrypt? Alice Bob 𝑝𝑝 = 𝐻 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝𝑝 𝑃 𝑝𝑝, 𝑏, π‘š π‘₯ Abort if 𝑝𝑝 ≠𝐻 π‘₯ . If 𝑏 = 0 then π‘π‘˜ = π‘₯ 1β€¦πœ† else π‘π‘˜ = π‘₯ πœ†+1… 2πœ† Output 𝐸𝑛𝑐(π‘π‘˜, π‘š) Cara 𝑐= 𝐸𝑛 𝑐 2 (𝑝𝑝, 𝑏, π‘š) π‘š

16 How do we encrypt? 𝑐= 𝐸𝑛 𝑐 2 (𝑝𝑝, 𝑏, π‘š) 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝𝑝
Alice Bob 𝑝𝑝 = 𝐻 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝 π‘˜ 0 𝑝 π‘˜ 1 𝑝𝑝 𝐸𝑛 𝑐 2 (𝑝𝑝, 𝑏, π‘š) Circuit 𝐢 π‘š (π‘π‘˜) = 𝐸𝑛𝑐 π‘π‘˜, π‘š πΊπ‘Žπ‘Ÿπ‘π‘™π‘’ 𝐢 π‘š β†’ 𝐢 , π‘™π‘Ž 𝑏 𝑖,0 , π‘™π‘Ž 𝑏 𝑖,1 𝑖 βˆ€ π‘–βˆˆ {π‘πœ†+1, π‘πœ†+πœ†}, π›Ύβˆˆ{0,1} 𝑐 𝑖,𝛾 = 𝐸 𝑝𝑝,𝑖,𝛾 , π‘™π‘Ž 𝑏 𝑖,𝛾 𝑐= 𝐢 , 𝑐 𝑖,𝛾 Cara 𝑐= 𝐸𝑛 𝑐 2 (𝑝𝑝, 𝑏, π‘š) π‘š

17 How to decrypt? Decrypt 𝑐= 𝐢 , 𝑐 𝑖,𝛾 using 𝑝 π‘˜ 1 , 𝑝 π‘˜ 2 and 𝑠 π‘˜ 𝛾
Recall 𝑐 1,0 = 𝐸 𝑝𝑝,π›Ύπœ†+1,0 , π‘™π‘Ž 𝑏 1,0 and 𝑐 1,1 =𝐸 𝑝𝑝,π›Ύπœ†+1,1 , π‘™π‘Ž 𝑏 1,1 which one can be decrypted? 𝑐 1,𝑝 π‘˜ 𝛾,1 which decrypts to π‘™π‘Žπ‘ 1,𝑝 π‘˜ 𝛾,1 Similarly, for each 𝑖 decrypt 𝑐 𝑖,0 or 𝑐 𝑖,1 Evaluate( 𝐢 , {π‘™π‘Žπ‘ 𝑖,𝑝 π‘˜ 𝛾,𝑖 }) outputs 𝐸𝑛𝑐 𝑝 π‘˜ 𝛾 , π‘š

18 Many new Applications New constructions of cryptographic primitives from weaker computation assumptions Two round MPC [GS17,GS18,BL18,GIS18] TDF [GD18] from CDH Deterministic Encryption [GGH18] from CDH Beats the efficiency of prior works even under DDH Two-round OT [DGHMW19] form CDH First PIR with polylogarithmic communication under DDH [DGMMIO19] (also rate 1-OT and more) Many new techniques: Can lead to several other improvements!

19 Thank You! Questions? ? ?


Download ppt "Identity Based Encryption from the Diffie-Hellman Assumption"

Similar presentations


Ads by Google