Download presentation
Presentation is loading. Please wait.
1
Getting ready for Pre-Calculus class.
2
From Geometry: Special triangles
4
Ο/2 π/3 60Β° π 3 π/4 45Β° π/6 π 4 30Β° π 6 2π/3 3π/4 π 5π/6 π 2π 7π/6
Angle/degrees Angle/radians Β sin cos Β tan cot 0Β 30Β 45Β 60Β 90Β 120Β 135Β 150 Β 180 210Β 225Β 240Β Β 270 Β 300 Β 315 330Β 360Β π/3 60Β° π 3 Β π 2 π/4 90Β 45Β° π 4 π/6 Ο/2 30Β° π 6 2π/3 3π/4 πΒ 180 5π/6 0Β πΒ 2π 360 7π/6 5π/4 4π/3 3π/2Β 3π 2 Β Β 270 5π/3 7π/4 11π/6 2π
5
π¦= sin π₯ =πππ/βπ¦π π¦= cos π₯ =πππ/βπ¦π π¦= tan π₯ = sin π₯ cos π₯ =πππ/πππ π¦= cot π₯ = cos π₯ sin π₯ =πππ/πππ
6
One more time 1 2 2 2 3 2 1 3 2 2 2 1 2 1 1 3 3 1 1 3 1 3
7
ΞΈ π 2 π 3π 2 2π π¦=sinβ‘(π₯) π 2 π¦=π πππ₯ π 2π 3π 2 sin 3π 2 =β1 sin π 2 =1
2π 3π 2 ΞΈ π 2 π 3π 2 2π π¦=sinβ‘(π₯) sin 3π 2 =β1 sin π 2 =1 sin 0 =0 sin π =0 sin 2π =0
8
ΞΈ π 2 π 3π 2 2π π¦=cosβ‘(π₯) π 2 π¦=cosβ‘(π₯) π 2π 3π 2 cos π 2 =0
2π 3π 2 ΞΈ π 2 π 3π 2 2π π¦=cosβ‘(π₯) cos π 2 =0 cos 3π 2 =0 cos π =β1 cos 2π =1 cos 0 =1
9
π¦= sinβ‘(π/2) cosβ‘(π/2) = 1 0 =undefined
π¦=tanβ‘(π₯) π 2 π 4 π 2π 3π 2 π¦= tan π₯ = sinβ‘(π₯) cosβ‘(π₯) π¦= tan π₯ = sinβ‘(0) cosβ‘(0) = 0 1 =0 π¦= sinβ‘(3π/2) cosβ‘(3π/2) = β1 0 =π’ππππππππ π¦= sinβ‘(π/4) cosβ‘(π/4) = 2 /2 2 /2 =1 π¦= sinβ‘(π/2) cosβ‘(π/2) = 1 0 =undefined π¦= tan π₯ = sinβ‘(π) cosβ‘(π) = 0 1 =0
10
π¦=cotβ‘(π₯) π 2 3π 4 π 4 π 2π 3π 2 π¦= cot π₯ = cosβ‘(π₯) sinβ‘(π₯) π¦= cot π₯ = cosβ‘(π/2) sinβ‘(π/2) = 0 1 =0 π¦= cot π₯ = cosβ‘(π/4) sinβ‘(π/4) = 2 /2 2 /2 =1 π¦= cot π₯ = cosβ‘(0) sinβ‘(0) =π’ππππ π¦= cot π₯ = cosβ‘(3π/4) sinβ‘(3π/4) = 2 /2 2 /2 =β1 π¦= cot π₯ = cos π sinβ‘(π) =π’ππππ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.