Download presentation
Presentation is loading. Please wait.
Published bySurya Kusnadi Modified over 5 years ago
1
Cyfres Geometrig Geometric Series @mathemateg /adolygumathemateg
2
Cyfres Geometrig Geometric Series
Mae cyfres o rifau yn gyfres geometrig os ydym yn lluosi efoβr un cysonyn i gael y rhif nesaf yn y gyfres. A sequence of numbers is a geometric sequence if we multiply by the same constant to obtain the next number in the sequence. Er enghraifft, maeβr gyfres 3, 6, 12, 24, 48, ... yn gyfres geometrig ble maeβr term cyntaf yn 3 ac maeβr gymhareb cyffredin yn 2. For example, the sequence 3, 6, 12, 24, 48, ... is a geometric sequence where the first term is 3 and the common ratio is 2. Terminoleg / Terminology π Term cyntaf y gyfres First term of the sequence π Y gymhareb cyffredin The common ratio π Term olaf y gyfres, os oes un yn bodoli Last term of the sequence, if one exists π‘ π πfed term y gyfres The πth term of the sequence
3
Cyfres Geometrig Geometric Series
Ar gyfer cyfres geometrig efo term cyntaf π a chymhareb cyffredin π: For a geometric sequence with first term π and common ratio π: Term cyntaf / First term π‘ 1 =π Ail derm / Second term π‘ 2 =ππ Trydydd term / Third term π‘ 3 =π π 2 Pedwerydd term / Fourth term π‘ 4 =π π 3 Nfed term / Nth term π‘ π =π π πβ1 Ar gyfer pob cyfanrif π / For all integers π, π= π‘ π+1 π‘ π
4
Cyfres Geometrig Geometric Series
Maeβn bosib ystyried cyfanswm π π yr π term cyntaf mewn cyfres geometrig. The geometric series π π is the sum of the first π terms of a geometric sequence. Ar gyfer y gyfres geometrig 3, 6, 12, 24, 48, .... / For the geometric sequence 3, 6, 12, 24, 48, .... π 3 =3+6+12=21 π 6 = =189
5
Swm π term cyntaf cyfres geometrig
Profwch mai swm π term cyntaf cyfres geometrig efo term cyntaf π a chymhareb cyffredin π yw π π = π 1β π π 1βπ . Prawf Term 1af: π‘ 1 =π 2il Derm: π‘ 2 =ππ Nfed Term: π‘ π =π π πβ1 Swm yr π term cyntaf: π π = π‘ 1 + π‘ 2 +β―+ π‘ πβ1 + π‘ π π π =π+ππ+β―+π π πβ2 +π π πβ1 βββββο Lluosi efo π: π π π =ππ+π π 2 +β―+π π πβ1 +π π π βββββο Yn gwneud ο β ο : π π βπ π π =πβπ π π π π 1βπ =π 1β π π π π = π 1β π π 1βπ QED
6
The sum of the first π terms of a geometric sequence
Prove that the sum of the first π terms of a geometric sequence with first term π and common ratio π is given by π π = π 1β π π 1βπ . Proof 1st Term: π‘ 1 =π 2nd Term: π‘ 2 =ππ Nth Term: π‘ π =π π πβ1 Sum of the first π terms: π π = π‘ 1 + π‘ 2 +β―+ π‘ πβ1 + π‘ π π π =π+ππ+β―+π π πβ2 +π π πβ1 βββββο Multiplying by π: π π π =ππ+π π 2 +β―+π π πβ1 +π π π βββββο Subtracting ο β ο : π π βπ π π =πβπ π π π π 1βπ =π 1β π π π π = π 1β π π 1βπ QED
7
Swm i anfeidredd Sum to infinity
Os yw π <1 maeβn bosib ystyried cyfanswm π β holl dermau cyfres geometrig. If π <1 we can consider the sum π β of all terms of a geometric sequence. Oβr prawf gynt, gwyddom fod π π = π 1β π π 1βπ . From the previous proof, we know that π π = π 1β π π 1βπ . Os yw π <1, hynny yw β1<π<1, yna bydd π π yn lleihau wrth i π gynyddu. If π <1, that is β1<π<1, then as π increases π π decreases. Dywedwn bod π π β0 fel mae πββ. We say that π π β0 as πββ. Felly os yw π <1 mae π β = π 1βπ . Therefore if π <1 we have π β = π 1βπ .
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.