Presentation is loading. Please wait.

Presentation is loading. Please wait.

Search for Lepton-number Violating Processes

Similar presentations


Presentation on theme: "Search for Lepton-number Violating Processes"— Presentation transcript:

1 Search for Lepton-number Violating Processes
Pheno 2006 Anupama Atre Anupama Atre

2 Neutrinos are massive Anupama Atre

3 There are only three “active” light neutrinos
We also know There are only three “active” light neutrinos N = § 0.008, from Z pole at LEP-1. Direct lab bound: m < 2.2 eV from Tritium beta decay  mi < 0.17 – 1 eV from WMAP, SDSS (Ly spectra), SNIa. The absence of neutrinoless double beta decay bound on Majorana mass <m> ee < 1 eV Anupama Atre

4 Hierarchy – inverted or normal?
Absolute mass scale ? Hierarchy – inverted or normal?  m2a  m2s m1 m2 m3 Normal Inverted Dirac or Majorana? Anupama Atre

5 Anupama Atre

6 Anupama Atre

7 Charged current and Neutral current
Anupama Atre

8 L = 2 process  Majorana nature of neutrino
The transition rates are proportional to: for light neutrino [1] for intermediate mass neutrino [2] for heavy neutrino [3] f1 f2’ f1’ f2 generic diagram [1] AA, V Barger, T Han, Phys. Rev. D 71, (2005) [arXiv:hep-ph/ ] [2] AA, T Han, S Pascoli to appear [3] T Han, B Zhang [arXiv:hep-ph/ ] AA, T Han, S pascoli, B Zhang to appear Anupama Atre

9 Light (active) Majorana neutrino
f1 f2’ f1’ f2 We have six effective neutrino masses : 0 , rare meson decay :  decay : - e+ conversion, rare meson decay :  decay : rare meson decay : none Anupama Atre

10 Determination of effective neutrino masses
Parameter Input |ma2| 1.9£10-3 eV £10-3 eV2 |ms2| 90% CL m2s vs tan2s plot a 90% CL m2a vs sin22a plot s 90%CL m2s vs tan2s plot x 90% CL CHOOZ exclusion plot 0 to 2 2 3 0.42 eV at 95% CL 3 masses: m1, m2 and m3  = m1 + m2 + m3 and  m2a and  m2s 3 mixing angles: a, s and x 3 phases: , 2 and 3 AA, V Barger, T Han, Phys. Rev. D 71, (2005) [arXiv:hep-ph/ ] Anupama Atre

11 Anupama Atre

12 Neutrinoless Double Beta Decay (0)
Isotope Half-life (yrs) hmiee (eV) Year 48Ca > 1.4 £ 1022 <7.2 – 44.7 2004 76Ge > 1.9 £ 1025 <0.35 2001 > 1.6 £ 1025 <0.33 – 1.35 2002 = 1.2 £ 1025 = 0.44 82Se > 2.7 £ 1022 <5 1992 100Mo > 5.5 £ 1022 <2.1 116Cd > 1.7 £ 1023 <1.7 2003 128Te > 7.7 £ 1024 <1.1 – 1.5 1993 130Te > 5.5 £ 1023 <0.37 – 1.9 136Xe > 4.4 £ 1023 <1.8 – 5.2 1998 150Nd > 1.2 £ 1021 < 3.0 1997 (A,Z) Nuclear Physics (A,Z+2) S.R. Elliott and J. Engel, J. Physics G30 (2004) R183, [arXiv:hep-ph/ ] = 0.14 (0.06) eV Anupama Atre

13 Lepton Number Violating Tau Decays
Decay Mode Bexp - ! e+ - - 1.9 £ 10-6 12 TeV - ! e+ - K- 2.1 £ 10-6 46 TeV - ! e+ K- K- 3.8 £ 10-6 730 TeV - ! + - - 3.4 £ 10-6 20 TeV - ! + - K- 7.0 £ 10-6 100 TeV - ! + K- K- 6.0 £ 10-6 1000 TeV CLEO Collaboration, D.Bliss et al., Phys. Rev. D 57 (1998) 5903, [arXiv:hep-ex/ ] Anupama Atre

14 Rare Meson Decays Decay Mode Bexp TeV D+ ! K- e+ e+ 1.2 £ 10-4 1900
1.3 £ 10-5 670 D+ ! K- e+ + 1.3 £ 10-4 1500 Ds+ ! K- e+ e+ 6.3 £ 10-4 990 Ds+ ! K- + + 150 Ds+ ! K- e+ + 6.8 £ 10-4 740 B+ ! K- e+ e+ 1.0 £ 10-6 1300 B+ ! K- + + 1.8 £ 10-6 1800 B+ ! K- e+ + 2.0 £ 10-6 Decay Mode Bexp TeV D+ ! - e+ e+ 9.6 £ 10-5 320 D+ ! - + + 4.8 £ 10-6 76 D+ ! - e+ + 5.0 £ 10-5 170 Ds+ ! - e+ e+ 6.9 £ 10-4 200 Ds+ ! - + + 2.9 £ 10-5 42 Ds+ ! - e+ + 7.3 £ 10-4 150 B+ ! - e+ e+ 1.6 £ 10-6 420 B+ ! - + + 1.4 £ 10-6 400 B+ ! - e+ + 1.3 £ 10-6 270 K+ ! - e+ e+ 6.4 £ 10-10 0.11 K+ ! - + + 3.0 £ 10-9 0.48 K+ ! - e+ + 5.0 £ 10-10 0.09 Anupama Atre

15 Muon – Positron Conversion
(A,Z) Nuclear Physics (A,Z-2) · 17(82) MeV K. Zuber, [arXiv:hep-ph/ ] SINDRUM II Collaboration, J. Kaulard et al., Phys. Lett. B 422 (1998) 334 Anupama Atre

16 Summary 0 - - e+ conversion - ! e+ - - - ! + - -
Cosmo Bounds Exp Bounds Experiment 0.14 (0.06) eV 0.33 eV 0 17 MeV* - - e+ conversion 12 TeV - ! e+ - - 480 GeV K+ ! - + + 19 TeV - ! + - - none B- ! M- t+ t+ * 90 GeV from K+  - e+ + Anupama Atre

17 Intermediate mass Majorana neutrino *
f1 f2’ f1’ f2 resonant enhancement, transition rates tau decay, rare meson decay Anupama Atre * AA, T Han and S Pascoli, to appear

18 Width of Intermediate mass Majorana neutrino
2 body decays : CC decays  NC decays  3 body decays: CC decays  NC decays  CC + NC decays  combination of CC + NC mixings Anupama Atre

19 36 decay modes to look for lepton number violation !!!!
Parameters for MC sampling mass of neutrino m4 resonant mass region three mixings ~ 0 to 1 Anupama Atre

20 Anupama Atre

21 Anupama Atre

22 Anupama Atre

23 Anupama Atre

24 Anupama Atre

25 Current bounds on sterile neutrino: peak searches accelerator searches
heavy atmospheric neutrinos cosmology, BBN, WMAP Anupama Atre

26 It is of fundamental importance to verify Majorana nature of neutrinos
We look for genuine  L = 2 processes For the three active ’s 0 is the best hope For a sterile neutrino N (or 4) Rare  and meson decays are sensitive to 140 MeV < m4 < 5 GeV, 10-9 < |V l4|2 < 10-2 Depending on the unknown mixing and mass 4 can show up in any channel Other processes to look for B+  e+ + M-, B+  + + M-, B+  + + M- Anupama Atre

27 Thank You !!!!! Anupama Atre


Download ppt "Search for Lepton-number Violating Processes"

Similar presentations


Ads by Google