Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gwerthoedd Arbennig Sin, Cos a Tan

Similar presentations


Presentation on theme: "Gwerthoedd Arbennig Sin, Cos a Tan"β€” Presentation transcript:

1 Gwerthoedd Arbennig Sin, Cos a Tan
Special Values of Sin, Cos and Tan @mathemateg /adolygumathemateg

2 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Ongl πœ‹ 4 neu 45Β°: sin πœ‹ 4 = cyferbyn hypotenws = 1 2 cos πœ‹ 4 = agos hypotenws = 1 2 tan πœ‹ 4 = cyferbyn agos = 1 1 =1 An angle of πœ‹ 4 or 45Β°: sin πœ‹ 4 = opposite hypotenuse = 1 2 cos πœ‹ 4 = adjacent hypotenuse = 1 2 tan πœ‹ 4 = opposite adjacent = 1 1 =1 πœ‹ 4 2 1 πœ‹ 4 1

3 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Onglau πœ‹ 3 (60Β°) a πœ‹ 6 (30Β°): Angles of πœ‹ 3 (60Β°) and πœ‹ 6 (30Β°): πœ‹ 3 2 πœ‹ 3 2 1 πœ‹ 6 2 πœ‹ 3 πœ‹ 6 1 Cychwyn efo triongl hafalochrog / Start with an equilateral triangle πœ‹ 3 πœ‹ 3 2 2 Haneru’r triongl / Halve the triangle

4 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Ongl πœ‹ 6 neu 30Β°: Ongl πœ‹ 3 neu 60Β°: sin πœ‹ 6 = cyferbyn hypotenws = sin πœ‹ 3 = cyferbyn hypotenws = cos πœ‹ 6 = agos hypotenws = cos πœ‹ 3 = agos hypotenws = 1 2 tan πœ‹ 6 = cyferbyn agos = tan πœ‹ 3 = cyferbyn agos = = 3 An angle of πœ‹ 6 or 30Β°: An angle of πœ‹ 3 or 60Β°: sin πœ‹ 6 = opposite hypotenuse = sin πœ‹ 3 = opposite hypotenuse = cos πœ‹ 6 = adjacent hypotenuse = cos πœ‹ 3 = adjacent hypotenuse = 1 2 tan πœ‹ 6 = opposite adjacent = tan πœ‹ 3 = opposite adjacent = = 3 πœ‹ 3 2 1 πœ‹ 6 3 Theorem Pythagoras i ffeindio 3 Pythagoras’ Theorem to find 3

5 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Crynodeb / Summary: Gellir ffeindio lluosrifau gwahanol o 30Β° trwy ddefnyddio cymesuredd graffiau sin, cos a tan. Other multiples of 30Β° can be found by using the symmetries of the graphs of sin, cos and tan. Ongl / Angle Sin Cos Tan 1 πœ‹ 6 neu / or 30Β° 1 2 3 2 1 3 πœ‹ 4 neu / or 45Β° 1 2 πœ‹ 3 neu / or 60Β° 3 πœ‹ 2 neu / or 90Β° Heb ei ddiffinio / Not defined

6 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Brascamcanion onglau bach / Small angle approximations Os oes gennym ongl fach, ac os yw’r ongl yn cael ei fesur mewn radianau, yna gellir defnyddio’r brasamcanion canlynol. If we have a small angle, and if the angle is measured in radians, then we can use the following approximations. sin πœƒ β‰ˆπœƒ cos πœƒ β‰ˆ1βˆ’ πœƒ tan πœƒ β‰ˆπœƒ Mae’r brasamcanion yn gywir i dri ffigur ystyrlon os yw –0.105 < πœƒ < (neu –6Β° < πœƒ < 6Β°). The approximations are correct to three significant figures if –0.105 < πœƒ < (or –6Β° < πœƒ < 6Β°).

7 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
πœƒ π‘Ÿ 𝑂 𝐴 𝐡 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Gadewch i’r ongl fach πœƒ ffurfio sector o gylch 𝑂𝐴𝐡. Arwynebedd y sector yw π‘Ÿ 2 πœƒ. Let the small angle πœƒ form the sector 𝑂𝐴𝐡 of a circle. The area of the sector is π‘Ÿ 2 πœƒ.

8 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
πœƒ π‘Ÿ 𝑂 𝐴 𝐡 𝐢 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Gadewch i ni ychwanegu’r cord 𝐴𝐡 ag ymestyn y radiws 𝑂𝐴 i gyrraedd y pwynt 𝐢 fel bod 𝑂𝐡 a 𝐡𝐢 yn berpendicwlar. Let us add the chord 𝐴𝐡 and extend the radius 𝑂𝐴 to reach the point 𝐢 so that 𝑂𝐡 and 𝐡𝐢 are perpendicular.

9 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
πœƒ π‘Ÿ 𝑂 𝐴 𝐡 𝐢 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Mae 𝑂𝐢𝐡 yn driongl ongl sgwΓ’r efo sail π‘Ÿ ag uchder π‘Ÿ tan πœƒ . Arwynebedd triongl 𝑂𝐢𝐡 yw π‘Ÿ 2 tan πœƒ . Arwynebedd y triongl isosgeles 𝑂𝐴𝐡 yw π‘Ÿ 2 sin πœƒ . 𝑂𝐢𝐡 is a right-angled triangle with base π‘Ÿ and height π‘Ÿ tan πœƒ . The area of the triangle 𝑂𝐢𝐡 is π‘Ÿ 2 tan πœƒ . The area of the isosceles triangle 𝑂𝐴𝐡 is π‘Ÿ 2 sin πœƒ .

10 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Mae arwynebedd triongl 𝑂𝐴𝐡 < arwynebedd sector 𝑂𝐴𝐡 < arwynebedd triongl 𝑂𝐢𝐡 1 2 π‘Ÿ 2 sin πœƒ < 1 2 π‘Ÿ 2 πœƒ< 1 2 π‘Ÿ 2 tan πœƒ Gallwn rannu efo π‘Ÿ 2 gan ei fod o hyd yn bositif. sin πœƒ <πœƒ< tan πœƒ Gan fod πœƒ yn ongl fach bositif, mae sin πœƒ yn bositif. Felly gallwn rannu’r anhafaledd efo sin πœƒ . sin πœƒ sin πœƒ < πœƒ sin πœƒ < tan πœƒ sin πœƒ 1< πœƒ sin πœƒ < sin πœƒ cos πœƒ Γ— 1 sin πœƒ 1< πœƒ sin πœƒ < sec πœƒ

11 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Now area of triangle 𝑂𝐴𝐡 < area of sector 𝑂𝐴𝐡 < area of triangle 𝑂𝐢𝐡 1 2 π‘Ÿ 2 sin πœƒ < 1 2 π‘Ÿ 2 πœƒ< 1 2 π‘Ÿ 2 tan πœƒ We can divide by π‘Ÿ 2 as it is always positive. sin πœƒ <πœƒ< tan πœƒ Because πœƒ is a small positive angle, sin πœƒ is positive. We can therefore divide the inequality by sin πœƒ . sin πœƒ sin πœƒ < πœƒ sin πœƒ < tan πœƒ sin πœƒ 1< πœƒ sin πœƒ < sin πœƒ cos πœƒ Γ— 1 sin πœƒ 1< πœƒ sin πœƒ < sec πœƒ

12 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Fel mae πœƒ yn agosau at 0, mae sec πœƒ yn agosau at 1. Felly, wrth i πœƒ agosau at 0, mae πœƒ sin πœƒ yn gorwedd rhwng 1 a rhif sy’n agosau at 1. Felly, wrth i πœƒ agosau at 0, mae πœƒ sin πœƒ yn agosau at 1. Mae hyn yn golygu bod sin πœƒ β‰ˆπœƒ ar gyfer gwerthoedd bach o πœƒ. Mae’n bosib dangos bod tan πœƒ β‰ˆπœƒ trwy rannu’r anhafaleddau efo tan πœƒ (yn lle sin πœƒ ). Gallwn ddefnyddio’r unfathiant ongl ddwbl cos πœƒ ≑1βˆ’2 sin 2 πœƒ 2 i ddarganfod brasamcan ar gyfer cos πœƒ . Os yw πœƒ 2 yn fach, mae cos πœƒ β‰ˆ1βˆ’2 πœƒ cos πœƒ β‰ˆ1βˆ’ πœƒ

13 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
As πœƒ approaches 0, sec πœƒ approaches 1. Therefore, as πœƒ approaches 0, πœƒ sin πœƒ lies between 1 and a number approaching 1. Therefore, as πœƒ approaches 0, πœƒ sin πœƒ approaches 1. This means that sin πœƒ β‰ˆπœƒ for small values of πœƒ. It is possible to show that tan πœƒ β‰ˆπœƒ by dividing the inequality by tan πœƒ (instead of sin πœƒ ). We can use the double angle identity cos πœƒ ≑1βˆ’2 sin 2 πœƒ 2 to find an approximation for cos πœƒ . If πœƒ 2 is small, then cos πœƒ β‰ˆ1βˆ’2 πœƒ cos πœƒ β‰ˆ1βˆ’ πœƒ

14 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Ymarfer 1 (a) Os yw πœƒ yn ongl fach, darganfyddwch frasamcan ar gyfer y mynegiad sin 3πœƒ 1+ cos 2πœƒ . (b) Os yw πœƒ yn ongl fach, dangoswch fod tan πœ‹ 4 +πœƒ β‰ˆ 1+πœƒ 1βˆ’πœƒ . (c) Os yw πœƒ yn ddigon bach fel y gallwch anwybyddu πœƒ 2 , dangoswch fod 4 sin πœ‹ 4 βˆ’πœƒ β‰ˆ2 2 (1βˆ’πœƒ). (ch) O wybod bod 1Β°β‰ˆ0.017 radian, darganfyddwch werth ar gyfer tan (61Β°) heb ddefnyddio’r ffwythiant tan ar eich cyfrifiannell. (d) Darganfyddwch werth bach positif o π‘₯ sydd yn fras ddatrysiad i’r hafaliad cos π‘₯ βˆ’4 sin π‘₯ = π‘₯ 2 .

15 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Exercise 1 (a) If πœƒ is a small angle, find an approximation for the expression sin 3πœƒ 1+ cos 2πœƒ . (b) If πœƒ is a small angle, show that tan πœ‹ 4 +πœƒ β‰ˆ 1+πœƒ 1βˆ’πœƒ . (c) If πœƒ is small enough so that you can ignore πœƒ 2 , show that 4 sin πœ‹ 4 βˆ’πœƒ β‰ˆ2 2 (1βˆ’πœƒ). (d) Given that 1Β°β‰ˆ0.017 radian, find a value for tan (61Β°) without using the π‘‘π‘Žπ‘› function on your calculator. (e) Find a small positive value of π‘₯ which is an approximate solution of the equation cos π‘₯ βˆ’4 sin π‘₯ = π‘₯ 2 .

16 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Atebion: / Answers: (a) 3πœƒ 2(1βˆ’ πœƒ 2 ) (ch) [or (d)] 1.802 (d) [or (e)] radian


Download ppt "Gwerthoedd Arbennig Sin, Cos a Tan"

Similar presentations


Ads by Google