Download presentation
Presentation is loading. Please wait.
1
Gwerthoedd Arbennig Sin, Cos a Tan
Special Values of Sin, Cos and Tan @mathemateg /adolygumathemateg
2
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Ongl π 4 neu 45Β°: sin π 4 = cyferbyn hypotenws = 1 2 cos π 4 = agos hypotenws = 1 2 tan π 4 = cyferbyn agos = 1 1 =1 An angle of π 4 or 45Β°: sin π 4 = opposite hypotenuse = 1 2 cos π 4 = adjacent hypotenuse = 1 2 tan π 4 = opposite adjacent = 1 1 =1 π 4 2 1 π 4 1
3
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Onglau π 3 (60Β°) a π 6 (30Β°): Angles of π 3 (60Β°) and π 6 (30Β°): π 3 2 π 3 2 1 π 6 2 π 3 π 6 1 Cychwyn efo triongl hafalochrog / Start with an equilateral triangle π 3 π 3 2 2 Haneruβr triongl / Halve the triangle
4
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Ongl π 6 neu 30Β°: Ongl π 3 neu 60Β°: sin π 6 = cyferbyn hypotenws = sin π 3 = cyferbyn hypotenws = cos π 6 = agos hypotenws = cos π 3 = agos hypotenws = 1 2 tan π 6 = cyferbyn agos = tan π 3 = cyferbyn agos = = 3 An angle of π 6 or 30Β°: An angle of π 3 or 60Β°: sin π 6 = opposite hypotenuse = sin π 3 = opposite hypotenuse = cos π 6 = adjacent hypotenuse = cos π 3 = adjacent hypotenuse = 1 2 tan π 6 = opposite adjacent = tan π 3 = opposite adjacent = = 3 π 3 2 1 π 6 3 Theorem Pythagoras i ffeindio 3 Pythagorasβ Theorem to find 3
5
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Crynodeb / Summary: Gellir ffeindio lluosrifau gwahanol o 30Β° trwy ddefnyddio cymesuredd graffiau sin, cos a tan. Other multiples of 30Β° can be found by using the symmetries of the graphs of sin, cos and tan. Ongl / Angle Sin Cos Tan 1 π 6 neu / or 30Β° 1 2 3 2 1 3 π 4 neu / or 45Β° 1 2 π 3 neu / or 60Β° 3 π 2 neu / or 90Β° Heb ei ddiffinio / Not defined
6
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Brascamcanion onglau bach / Small angle approximations Os oes gennym ongl fach, ac os ywβr ongl yn cael ei fesur mewn radianau, yna gellir defnyddioβr brasamcanion canlynol. If we have a small angle, and if the angle is measured in radians, then we can use the following approximations. sin π βπ cos π β1β π tan π βπ Maeβr brasamcanion yn gywir i dri ffigur ystyrlon os yw β0.105 < π < (neu β6Β° < π < 6Β°). The approximations are correct to three significant figures if β0.105 < π < (or β6Β° < π < 6Β°).
7
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
π π π π΄ π΅ Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Gadewch iβr ongl fach π ffurfio sector o gylch ππ΄π΅. Arwynebedd y sector yw π 2 π. Let the small angle π form the sector ππ΄π΅ of a circle. The area of the sector is π 2 π.
8
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
π π π π΄ π΅ πΆ Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Gadewch i ni ychwaneguβr cord π΄π΅ ag ymestyn y radiws ππ΄ i gyrraedd y pwynt πΆ fel bod ππ΅ a π΅πΆ yn berpendicwlar. Let us add the chord π΄π΅ and extend the radius ππ΄ to reach the point πΆ so that ππ΅ and π΅πΆ are perpendicular.
9
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
π π π π΄ π΅ πΆ Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Mae ππΆπ΅ yn driongl ongl sgwΓ’r efo sail π ag uchder π tan π . Arwynebedd triongl ππΆπ΅ yw π 2 tan π . Arwynebedd y triongl isosgeles ππ΄π΅ yw π 2 sin π . ππΆπ΅ is a right-angled triangle with base π and height π tan π . The area of the triangle ππΆπ΅ is π 2 tan π . The area of the isosceles triangle ππ΄π΅ is π 2 sin π .
10
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Mae arwynebedd triongl ππ΄π΅ < arwynebedd sector ππ΄π΅ < arwynebedd triongl ππΆπ΅ 1 2 π 2 sin π < 1 2 π 2 π< 1 2 π 2 tan π Gallwn rannu efo π 2 gan ei fod o hyd yn bositif. sin π <π< tan π Gan fod π yn ongl fach bositif, mae sin π yn bositif. Felly gallwn rannuβr anhafaledd efo sin π . sin π sin π < π sin π < tan π sin π 1< π sin π < sin π cos π Γ 1 sin π 1< π sin π < sec π
11
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Now area of triangle ππ΄π΅ < area of sector ππ΄π΅ < area of triangle ππΆπ΅ 1 2 π 2 sin π < 1 2 π 2 π< 1 2 π 2 tan π We can divide by π 2 as it is always positive. sin π <π< tan π Because π is a small positive angle, sin π is positive. We can therefore divide the inequality by sin π . sin π sin π < π sin π < tan π sin π 1< π sin π < sin π cos π Γ 1 sin π 1< π sin π < sec π
12
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Fel mae π yn agosau at 0, mae sec π yn agosau at 1. Felly, wrth i π agosau at 0, mae π sin π yn gorwedd rhwng 1 a rhif syβn agosau at 1. Felly, wrth i π agosau at 0, mae π sin π yn agosau at 1. Mae hyn yn golygu bod sin π βπ ar gyfer gwerthoedd bach o π. Maeβn bosib dangos bod tan π βπ trwy rannuβr anhafaleddau efo tan π (yn lle sin π ). Gallwn ddefnyddioβr unfathiant ongl ddwbl cos π β‘1β2 sin 2 π 2 i ddarganfod brasamcan ar gyfer cos π . Os yw π 2 yn fach, mae cos π β1β2 π cos π β1β π
13
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
As π approaches 0, sec π approaches 1. Therefore, as π approaches 0, π sin π lies between 1 and a number approaching 1. Therefore, as π approaches 0, π sin π approaches 1. This means that sin π βπ for small values of π. It is possible to show that tan π βπ by dividing the inequality by tan π (instead of sin π ). We can use the double angle identity cos π β‘1β2 sin 2 π 2 to find an approximation for cos π . If π 2 is small, then cos π β1β2 π cos π β1β π
14
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Ymarfer 1 (a) Os yw π yn ongl fach, darganfyddwch frasamcan ar gyfer y mynegiad sin 3π 1+ cos 2π . (b) Os yw π yn ongl fach, dangoswch fod tan π 4 +π β 1+π 1βπ . (c) Os yw π yn ddigon bach fel y gallwch anwybyddu π 2 , dangoswch fod 4 sin π 4 βπ β2 2 (1βπ). (ch) O wybod bod 1Β°β0.017 radian, darganfyddwch werth ar gyfer tan (61Β°) heb ddefnyddioβr ffwythiant tan ar eich cyfrifiannell. (d) Darganfyddwch werth bach positif o π₯ sydd yn fras ddatrysiad iβr hafaliad cos π₯ β4 sin π₯ = π₯ 2 .
15
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Exercise 1 (a) If π is a small angle, find an approximation for the expression sin 3π 1+ cos 2π . (b) If π is a small angle, show that tan π 4 +π β 1+π 1βπ . (c) If π is small enough so that you can ignore π 2 , show that 4 sin π 4 βπ β2 2 (1βπ). (d) Given that 1Β°β0.017 radian, find a value for tan (61Β°) without using the π‘ππ function on your calculator. (e) Find a small positive value of π₯ which is an approximate solution of the equation cos π₯ β4 sin π₯ = π₯ 2 .
16
Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan
Atebion: / Answers: (a) 3π 2(1β π 2 ) (ch) [or (d)] 1.802 (d) [or (e)] radian
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.